Welcome to International Network for Natural Sciences | INNSpub

Naphthalene induced Biochemical changes in Anabas testudineus

Research Paper | February 1, 2016

| Download 4

L. Patnaik, D. Raut, D. Panda, S. Nayak

Key Words:

J. Bio. Env. Sci.8( 2), 154-158, February 2016


JBES 2016 [Generate Certificate]


Pollution of aquatic ecosystems can be ascertained through the organisms residing in it. Biochemical changes in fish reflect the type of degradation occurring in living systems under the influence of any toxicant. Naphthalene is easily absorbed and distributed inside the body and is metabolized mainly by liver. Anabas testudineus was used as toxicity test organism to analyze various forms of damage. Basic water quality indices were checked before designing the bioassay test. Lethal concentration Of Naphthalene which killed 50% of Test animals (LC50) was determined after exposing the fish to varying concentrations for a period of 96 hours. The test specimen selected had average weight of 2-5gm and was procured from Central Institute of Freshwater Aquaculture (CIFA). After exposure to Naphthalene, the test organism showed major changes in the glycogen content, acetylcholine esterase, protein and adenosine triphosphate with increase in toxicant concentration. Constant decrease in the biochemical parameters indicates stress condition of Anabas testudineus.


Copyright © 2016
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Naphthalene induced Biochemical changes in Anabas testudineus

APHA. 1985. Standard Methods for the Examination of Water and Wastewater. American Public Health Association. New York, USA. 16th ed.

Ellman GL, Courtney KD, Andres V, Feather S. 1961. A new and rapid Calorimetric determination of Acetyl Cholinesterase activity. Biochemical Pharmacology 7, 88-95.

Gravato C, Santos M. 2002. Juvenile sea bass liver P450, EROD induction, and erythrocytic genotoxic responses to PAH and PAH-like compounds. Ecotoxicology and Environmental Safety 51, 115–127.

Humason GL. 1972. Animal tissue Techniques.

Kabir Ahmed I, Sambasiva RKRS, Ramana RKV. l983. Dehydrogenase system of Tilapia mossambica under Sublethal malathion stress. Journal of Animal Morphology and Physiology 30, 101-106.

Klicpera M, Droahota Z, Zak R. 1957. Notes on the determination of muscle glycogen.

Latha KS. 2007. PhD Thesis Impact Of Latex And Plant Extract Of Calotropis Gigantea(L.) On Anabas Testudineus (Bloch) and the recovery of Latex Toxicity With Additive Nutrients.

Lowry OH, Rosenbough NJ, Farr AL, Randall RI. 1951.Protein measurement with Folin phenol reagent Journal of Biological Chemistry 193, 265-275.

Rao KJ, Murthy VSR. 1983. Hypoxia induced haemopoeitic tissue in Tilapia mossabica exposed to phosphomidon.Geo Bios 10, 204-207.

Takeo S, Sakanashi M. 1985. Characterization of membrane bound Adenosine Triphosphatase activity of enriched fraction from vascular smooth muscle. Enzyme 34, 152-165.

Tintos A, Gesto M, Miguez JM, Soengas JL. 2005. Naphthalene treatment alters liver intermediary metabolism and levels of steroid hormones in plasma of rainbow trout (Oncorhynchus mykiss). Ecotoxicology and Environmental Safety 66, (2007) 139–147. http://dx.doi.org/10.1016/j.ecoenv.2005.11.008.

Zayaprgassarazan Z, Anandan V. 1996. Effect of g-BHC on protein profiles of selected tissues of Anabas testudineus (Bloch). MPhil-Thesis, Pondicherry University,Pondicherry.