Nematicidal activity of the derivatives of oleanolic acid

Paper Details

Research Paper 01/06/2021
Views (859)
current_issue_feature_image
publication_file

Nematicidal activity of the derivatives of oleanolic acid

Anjum Ayub, Zainab Qadir, Nuzhat Arshad, Nabila Hassan, Salma Javed
J. Biodiv. & Environ. Sci. 18(6), 102-108, June 2021.
Copyright Statement: Copyright 2021; The Author(s).
License: CC BY-NC 4.0

Abstract

In this study, four 3 O-acylated derivatives of oleanolic acid (1a-1d) have been prepared. Compounds 3-β-[2-Triflouromethylbenzoyloxy]-olean-12-en-28-oic acid (1c) and 3-β-[4-Triflouromethylbenzoyloxy]-olean-12-en-28-oic acid (1d) are new and 3-β-[Benzoyloxy]-olean-12-en-28-oic acid (1a) and 3-β-Dichloroacetoxy-olean-12-en-28-oic acid (1b) have synthesized earlier. Their nematicidal activity against root knot nematode Meloidogyne incognita was determined and compared with the standard nematicide furadan. These derivatives were characterized through UV, IR and 1H-NMR. Oleanolic acid (1) was found to be most active with 75% toxicity and among these derivatives, 2-triflouromethyl benzoyl derivative (1c) showed highest toxicity 74% at 1% concentration. This is the first report of the nematicidal activity of these derivatives of oleanolic acid.

Almeida PDO, Boleti APA, Rüdiger AL, Lourenço GA, Junior VFV, Lima ES. 2015. Anti-Inflammatory Activity of Triterpenes Isolated from Protium paniculatum Oil-Resins. Evidence-Based Complementary and Alternative Medicine 1-10. http://dx.doi.org/10.1155/2015/293768

Ayeleso TB, Matumbamg, Mukwevho E. 2017. Oleanolic Acid and Its Derivatives: Biological Activities and Therapeutic Potential in Chronic Diseases. Molecules 22, 1-16. https://dx.doi.org/ 10.3390%2Fmolecules22111915

Bednarczyk-Cwynar B, Zaprutko L, Ruszkowski P, Hładoń B. 2012. Anticancer effect of A-ring or/and C-ring modified oleanolic acid derivatives on KB,mcF-7 and HeLa cell lines. Organic and Biomolecular Chemistry 10, 2201-2205. https://doi.org/10.1039/c2ob06923g

Chouaib K, Hichri F, Nguir A, Daami-Remadi M, Elie N, Touboul D, Jannet HB, Hamza MA. 2015. Semi-synthesis of new antimicrobial esters from the natural oleanolicand maslinic acids. Food Chemistry 183, 8-17. https://doi.org/10.1016/j. foodchem.2015.03.018

Echeverrigaray S, Zacaria J, Beltrão R. 2010. Nematicidal Activity of Monoterpenoids Against the Root-Knot Nematode Meloidogyne incognita. Phytopathology 100, 199-203. https://doi.org/10. 1094/PHYTO-100-2-0199

Feng A, Yang S, Sun Y, Zhang L, BO F, Li L. 2020. Development and Evaluation of Oleanolic Acid Dosage Forms and Its Derivatives. BioMed Research International 49, 1-16. https://doi.org/10.1155/ 2020/1308749

Gill BS, Kumar S, Navgeet. 2016. Triterpenes in cancer: significance and their influence. Molecular Biology Reports 43, 881-896. https://doi.org/10. 1007/s11033-016-4032-9

Hassan MA, Hongli S, Hussain N, Thi HP, Jingwu Z. 2013. Nematicidal Effects of Acacia nilotica, Azadirachta indica, Brassica chinensis and Ecklonia maxima against Soybean Cysts Nematode. International Journal of Agriculture and Biology 15, 599-602.

Hsu HY, Yang JJ, Lin CC. 1997. Effects of oleanolic acid and ursolic acid on inhibiting tumor growth and enhancing the recovery of hematopoietic system postirradiation in mice. Cancer Letters 111, 7-13. https://doi.org/10.1016/S0304-3835(96)04481-3

Laquale S, Avato P, Argentieri MP, Candido V, Perniola M, D’Addabbo T. 2020. Nematicidal activity of Echinacea species on the root‑knot nematode Meloidogyne incognita. Journal of Pest Science 93, 1397-1410. https://doi.org/10.1007/ s10340-020-0123

Lee W, Yang EJ, Ku SK, Song KS, Bae JS. 2013. Anti-inflammatory effects of oleanolic acid on LPS-induced inflammation in vitro and in vivo. Inflammation 36, 94-102. https://doi.org/10.1007/ s10753-012-9523

Li CX, Zang J, Wang P, Zhang XL, Guan HS, Li YX. 2006. Synthesis of two natural oleanolic acid saponins. Chinese Journal of Chemistry 24, 509-517. https://doi.org/10.1002/cjoc.200690098

Liu J. 2005. Oleanolic Acid and Ursolic Acid. Research Perspectives. Journal of Ethnopharmacology 100, 92-94. https://doi.org/10.1016/j.jep.2005.05.024

Lu XM, Yi HW, Xu JL, Sun Y, Li JX, Cao SX and Xu Q. 2007. A novel synthetic oleanolic acid derivative with amino acid conjugate suppresses tumour growth by inducing cell cycle arrest. Journal of Pharmacy and Pharmacology 59, 1087-1093. https://doi.org/10.1211/jpp.59.8.0005

Nazaruk J, Borzym-Kluczyk M. 2015. The role of triterpenes in the management of diabetes mellitus and its complications. Phytochemical Reviews 14, 675-690. https://dx.doi.org/10.1007%2Fs11101-014-9369-x

Nguyen DMC, Seo DJ, Kim KY, Park RD, Kim DH, Han YS, Kim TH, Jung WJ. 2013. Nematicidal activity of 3,4-dihydroxybenzoic acid purified from Terminalia nigrovenulosa bark against Meloidogyne incognita. Microbial Pathogenesis 59-60, 52-59. http://dx.doi.org/10.1016/j.micpath.2013.04.005

Nkeh-Chungag BN, Oyedeji OO, Oydeji AO, Ndebia EJ. 2015. Anti-inflammatory and membrane-stabilizing properties of two semisynthetic derivatives of oleanolic acid. Inflammation 38, 61-69. https://doi.org/10.1007/s10753-014-0007-y

Park EJ, Jang HJ, Park CS, Lee S, Lee J, Kim KH S, Yun, Lee BS, Rhomc SW. 2020. Evaluation of Nematicidal Activity of Streptomyces yatensis KRA-28 against Meloidogyne incognita. Journal of Microbiology and Biotechnology 30, 700-707. https://doi.org/10.4014/jmb.1908.08038

Pollier J, Goosens A. 2012. Oleanolic acid. Phytochemistry 77, 10-15. https://doi.org/10.1016/j.ph

Radwan MA, Farrag SAA, Abu-Elamayemmm, Ahmed NS. 2012. Extraction, characterization, and nematicidal activity of chitin and chitosan derived from shrimp shell waste. Biology and Fertility of Soils 48, 463-468. https://doi.org/10.1007/s00374-011-0632-7

Rali S, Oyedeji OO, Aremo OO, Oyedeji OO, Nkeh-Chungag BN. 2016. Semisynthesis of Derivatives of Oleanolic Acid from Syzygium aromaticum and Their Antinociceptive and Anti-Inflammatory Properties. Mediators of inflammation 1-9. http://dx.doi.org/10.1155/2016/8401843

Silvam L, David JP, Silva LCRC, Santos RAF, David JM, Lima LS, Reis PS, Fontana R. 2012. Bioactive oleanane, lupane and ursane triterpene acid derivatives. Molecules 17, 12197-12205.

Sultana N, Ata A. 2008. Oleanolic acid and related derivatives as medicinally important compounds. Journal of Enzyme Inhibition and Medicinal Chemistry 23, 739-763. https://www.tandfonline.com/action/ show CitFormats?doi=10.1080/14756360701633187

Zhu YM, Shen JK, Wang HK, Cosentino LM, Lee KH. 2001. Synthesis and anti-HIV activity of oleanolic acid derivatives. Bioorganic and Medicinal Chemistry Letters 11, 3115-3118. https://doi.org/ 10.1016/s0960-894x(01)00647-3

Related Articles

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.

Bacteriological analysis of selected fishes sold in wet markets in Tuguegarao city, Cagayan, Philippines

Lara Melissa G. Luis, Jay Andrea Vea D. Israel, Dorina D. Sabatin, Gina M. Zamora, Julius T. Capili, J. Biodiv. & Environ. Sci. 27(2), 1-9, August 2025.

Effect of different substrates on the domestication of Saba comorensis (Bojer) Pichon (Apocynaceae), a spontaneous plant used in agroforestry system

Claude Bernard Aké*1, Bi Irié Honoré Ta2, Adjo Annie Yvette Assalé1, Yao Sadaiou Sabas Barima1, J. Biodiv. & Environ. Sci. 27(1), 90-96, July 2025.

Determinants of tree resource consumption around Mont Sangbé national park in western Côte d’Ivoire

Kouamé Christophe Koffi, Serge Cherry Piba, Kouakou Hilaire Bohoussou, Naomie Ouffoue, Alex Beda, J. Biodiv. & Environ. Sci. 27(1), 71-81, July 2025.