On the use of GIS and DPSIR methods to analyse water quality in Seybouse Valley (North East of Algeria)

Paper Details

Research Paper 01/06/2019
Views (294) Download (10)
current_issue_feature_image
publication_file

On the use of GIS and DPSIR methods to analyse water quality in Seybouse Valley (North East of Algeria)

Aissam Ghrieb, Fethi Baali, Azzedine Hani, Larbi Djabri, Chemseddine Fehdi, Hicham Chaffai
J. Bio. Env. Sci.14( 6), 114-125, June 2019.
Certificate: JBES 2019 [Generate Certificate]

Abstract

Water sustainability in Seybouse Valley (North East of Algeria), must recognize the importance of water quantity and quality integration. So, there is a need for a better knowledge and understanding of the water quality determinants of groundwater abstraction to meet the municipal and agricultural uses. The quality of this ground water was determined by Water Abstraction from coastal aquifer (WAbs). This represents the amounts of water pumped by municipal wells in addition to the agricultural wells. It is measured by million cubic meters per year (hm3.y-1). The purposes of this investigation were to provide an overview of ground water quality and to determine spatial distribution of quality parameters in the study area using GIS tools. A new conceptual integrated water-management model has been developed, based on cause-effect relationships. The Driver-Pressure-State-Impact-Response was selected as a well-established framework to allocate the possible variables into five categories: namely socio-economic; pollution pressures; water quality; impacts; and management responses. In this paper, the artificial neural network (ANN) models were used to model and predict the relationship between groundwater abstraction and water quality determinants in the Seybouse Valley (North East of Algeria). The study area chosen is the Seybouse Valley and real data were collected from twenty-five wells for reference year 2006. Results indicate that the feed-forward multilayer perceptron models with back-propagation are useful tools to define and prioritize the important water quality parameters of groundwater abstraction and use. The model evaluation shows that the correlation coefficients are more than 97% for training, verification and testing data. The model aims to link the water quantity and quality with the objective to strengthen the Integrated Water Resources Management approach.

VIEWS 15

Aoun-Sebaiti B, Hani A, Djabri L, Chaffai H, Aichouri I, Bougherira N. 2013. Simulation of water supply and water demand in the valley of Seybouse (East Algeria). Desalination and Water Treatment. DOI: 10.1080/19443994, 855662, 1-6.

Asadollahfardi G. 2015. Water Quality Management. Assessment and Interpretation. SpringerBriefs in Water Science and Technology. DOI 10. 1007/978-3-662-44725-5.

Attoui B, Kherici N, Kherici-Bousnoubra H. 2014. Use of a new method for determining the vulnerability and risk of pollution of major groundwater reservoirs in the region of Annaba-Bouteldja (NE Algeria). Envron. Earth Sci 72, 891-903.

Cave RR, Ledoux L, Turner K, Jickells T, Andrews JE, Davies H. 2003. The Humber catchment andits coastal area: from UK to European perspectives. The Science of the Total Environment 314-316, 31-52.

Debièche  TH. 2002. Evolution de la qualité des eaux (salinité, acidité et métaux lourds) sous l’effet de la pollution saline, agricole et industrielle : Application à la basse plaine de la Seybouse Nord-Est algérien. Thèse de Doct. Univ. de Franche-Comté 200 p.

Debièche TH, Mania J, and Mudry J. 2003. Pollution d’une nappe alluviale par le chrome et l’étain à partir d’un stockage de résidus métallurgiques: Application à la basse plaine de la Seybouse, Nord-Est Algérien. Africa Geosciences Review, Vol. 8, N°4, 425-435.

Djabri L, Laouar R, Hani A, Mania J, Mudry J. 2003. The origin of water salinity on the Annaba coast (NE Algeria). Water Resources Systems, IAHS Publ. N°280, 229-235.

Djabri L, Fehdi Ch, Hani A, Bouhsina S, Nouiri I, Djouamaa MC, Boch AP, Baali F. 2015. Seasonal Hydrochemical Changes of Water from Alluvium Aquifers: Drean-Annaba Aquifer Case Study (NE Algeria). In: Lollino G., Manconi A., Clague J., Shan W., Chiarle M. (eds) Engineering Geology for Society and Territory- V. 1. Springer, Cham 89-93.

Elliott AC, Woodward WA. 2006. Statistical Analysis Quick Reference Guidebook: With SPSS Examples. SAGE Publications, Inc; 1 edition 280 p.

Eurpean Environmental Agency (EEA). 2014. The DPSIR framework used by the EEA. Available online: http://glossary.eea.europa.eu//terminology /sitesearch?term=DPSIR

Halimi S, Baali F, Kherici N, Zairi M, Bouhsina S. 2016. Irrigation and Risk of Saline Pollution. Example: Groundwater of Annaba plain (North East of Algeria). European Scientific Journal February 2016 edition, vol. 12, No6, 241-254.

Hamzaoui W, Hani S, Aoun-Sebaiti B, Harrat N, Chaffai H. 2017. Origin of water salinity in Annaba aquifer system, North-Eastern Algeria. J. Bio. & Env. Sci. 11 (6), 260-273. https://goo.gl/pfHEti

Hani A. 2003. Analyse méthodologique de la structure et des processus anthropiques : Application aux ressources en eau d’un bassin côtier méditerranéen. Thèse de Doctorat d’Etat en Sciences, Université Badji Mokhtar-Annaba 209 p.

Jalala S. 2005. Characterizing the Multi-criteria Parameters of Integrated Water Management Model in the Semi-arid Mediterranean Region: Application to Gaza Strip as a case study. PhD Thesis-univ of Lille 225 p.

Jeunesse I, Rounsevell M, Vanclooster M. 2003. Delivering a decision support system tool to a river contract: a way to implement the participatory approach principle at the catchment scale? Journal of physics and Chemistry of the Earth, Volume 28, Issues 12-13, 547-554.

Kherici N. 1993. Vulnérabilité à la pollution chimique des eaux souterraines d’un système de nappes superposées en milieu industriel et agricole (Annaba la Mafragh-nord-est algérien). Thèse de Doctorat d’Etat en Sciences, Université Badji Mokhtar-Annaba, 170 p.

Lamouroux C, Hani A. 2006. Identification of groundwater flow paths in complex aquifer systems, Hydrol. Processes 20(14), 2971-2987.

Mattas C, Voudouris KS, Panagopoulos A. 2014. Integrated Groundwater Resources Management Using the DPSIR Approach in a GIS Environment Context: A Case Study from the Gallikos River Basin, North Greece. Water 6, 1043-1068.

Oztuna D, Elhan AH, Tuccar E. 2006. Investigation of four different normality tests in terms of type 1 error rate and power un-der different distributions. Turkish Journal of Medical Sciences 36(3), 171-176.

Pearson K. 1896. Mathematical contributions to the theory of evolution, III. Regression, heredity and panmixia. Phil. Trans. A 187, 253-318. Reprinted in K. Pearson (1956), pp. 113-178.

Sayad L, Djabri L, Drouiche N, Chaffai H, Hani A. 2017. Calculation and interpretation of effluent discharge objectives of metal industry – case of Protuil manufacturing – Annaba (Northeast Algeria). Desalination and Water Treatment, doi: 10.5004/dwt.2017.21749, Vol. 99, 338-343.

StatSoft Inc. 2008. STATISTICA (data analysis software system), version 6.1. www.statsoft.com

Thode HJ. 2002. Testing for normality. New York: Marcel Dekker.

Toumi F, Bougherira N, Hani A, Chaffai H, Djabri L. 2018. Impact of the Berka Zerga urban discharge on the Environment and Lake Fetzara (Annaba, Algeria). J. Bio. Env. Sci. 12 (4), 176-184. https://goo.gl/QaxcDW

World Health Organization. 2004. Guidelines for Drinking-Water Quality, 3rd ed. Vol. 1, Recommendations. WHO, Geneva, Switzerland, 494 p.

Yap BW, Sim CH. 2011. Comparisons of various types of normality tests. Journal of Statistical Computation and Simulation 81(12), 2141-2155.

Arc GIS. 2015. Version 10.3.1.