Optimization studies on electrochemical and biosorption treatment of effluent containing nitro benzene by RSM

Paper Details

Research Paper 01/02/2013
Views (698)
current_issue_feature_image
publication_file

Optimization studies on electrochemical and biosorption treatment of effluent containing nitro benzene by RSM

P. SivaKumar, D. Prabhakaran, T. Kannadasan, S. Karthikeyan
Int. J. Biosci. 3(2), 1-7, February 2013.
Copyright Statement: Copyright 2013; The Author(s).
License: CC BY-NC 4.0

Abstract

A novel process combining Electrochemical Oxidation and Biosorption treatment was presented for
Nitrobenzene abatement. The electrochemical oxidation was investigated batch-wise in the presence of NaCl (2gL-1) electrolyte with lead as anode and copper as cathode electrodes. The conditions were optimized using response surface methodology (RSM), which result in 76.4% reduction of COD was found to be maximum and the optimum conditions were satisfied at current density 3.56 A dm-2, time 3 hours, flow rate 40 L hr -1, volume 9 L occur at minimum power consumption of 30.3 kWhr / kg COD. It is followed by biosorption treatment in the presence of biosorbents such as maize and rice stems at 15 g L-1. From this study it was observed that the maximum % of COD reduction was 97.7 % for the optimized time 4 days and volume 6 L for pretreated effluent containing nitrobenzene.

Hartter DR. 1985. The use and importance of nitroaromatic chemicals in the chemical industry. In Toxicity of Nitroaromatic Compounds – Chemical Industry Institute of Toxicology series. 1-13.

Lin ZX, Zheng FX. 2003. Study on adsorption process for nitrobenzene on water hyacinth root. Shanghai Environmental Sciences 12, 703-709, http://dx.doi.org/10.1021/ie0308487

Norvell Nelson. 2002. Electrochemical destruction of organic hazardous wastes. Platinum Metals Review 46(1), 18-23.

Panizza M, Bocca P, Cerisola G. 2000. Electrochemical treatment of wastewater containing polyaromatic organic pollutants. Water Research 34, 2601-2605, http://dx.doi.org/10.1016/S0043-1354(00)00145-7

Radha KV, Sridevi V, Kalaivani K. 2009. Electrochemical oxidation for the treatment of textile industry wastewater. Bioresource Technology 100(2), 987–990, http://dx.doi.org/10.1016/j.biortech.2008.06.048

Rajeshwar K, Ibanez JG. 1997. Fundamentals and Application in Pollution Abatement. Academic Press, ISBN: 9780125762601.

Rajeshwar K, Ibanez JG, Swain GM. 1994. Electrochemistry and the environment. Journal of Applied Electrochemistry 24(11), 1077–1091.

Robinson T, Chandran B, Nigam P. 2005. Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Research 36, 2824–2830, http://dx.doi.org/10.1016/S0043-1354(01)00521-8

Shengrui Wang, Suwen Yang, Xiangcan Jin, Liangke Liu, Fengchang Wu. 2010. Use of low cost crop biological wastes for the removal of Nitrobenzene from water. Desalination 264, 32-36, http://dx.doi.org/10.1016/j.desal.2010.06.075

Yousuf M, Mollah A, Schennach R, Parga JR, Cocke DL. 2001. Electro coagulation (EC)-science and applications. Journal of Hazardous Materials 84, 29–41, http://dx.doi.org/10.1016/S0304-3894(01)00176-5

Yu-Ping Li, Hong-Bin Cao, Chen-Ming Liu, Yi Zhang. 2006. Electrochemical reduction of nitrobenzene at carbon nanotube electrode. Journal of Hazardous Materials 148, 158-163, http://dx.doi.org/10.1016/j.jhazmat.2007.02.021

Zhao XK, Yang GP, Gao XC. 2003. Studies on the sorption behaviors of nitrobenzene on marine sediments. Chemosphere 52(5), 917-25.

Related Articles

Protective role of α-tomatine against oxidative stress induced reactive oxygen species: In vitro radical scavenging assays

Nihal Ahamed Abulkalam Azad, Suresh Kathiresan, Theerthu Azhamuthu, Senkuttuvan Ilanchit Chenni, Pugazhendhi Ravichandran, Maharani Jaganathan, Rajeswari Vasu, Pratheeba Veerapandiyan, Int. J. Biosci. 27(5), 123-135, November 2025.

Short-term effects of tillage, manure and inorganic fertilizer on soil properties, agronomic characteristics and yield of rice: A review

Md. Khayrul Islam Bashar, Md. Ekhlasur Rahman, Md. Mamunur Rashid, Md. Foysal Ibne Siraj, Md. Rasel Mahmud, Md. Mahbubul Alam, Sharmin Sultana, KM. Nazmul, Syed Alim Al Razir, Md. Mamun Hossain, Int. J. Biosci. 27(5), 83-105, November 2025.

Availability and quality of raw materials used in intensive poultry farming in Burkina Faso: The case of the city of Ouagadougou

Zampou Yasmine Jessica Irène, Gnanda Bila Isidore, Sanou Sita, Zare Yacouba, Traore Boureima, Ky Inoussa, Zongo Moussa, Int. J. Biosci. 27(5), 73-82, November 2025.

Unravelling the complex interactions between microplastics and PPCPs: The environment and health implications

Roshy Ann Mathews, S. Rajakumar, N. Aishwarya, M. Prashanthi Devi, Int. J. Biosci. 27(5), 40-72, November 2025.

Nutraceutical value of Gigantochloa atter and Bambusa blumeana

Eddilyn B. Plaza, Gemma A. Gruyal, Int. J. Biosci. 27(5), 34-39, November 2025.

Absence of climatic factors influence on the prevalence of COVID-19 in Benin: A spatiotemporal analysis

Houndonougbo Antoine, Lagaki Koudousse, Dramane Gado, Chogolou Ruth, Sanoussi Falilath, Kissira Islamiath, Sohou Stephane, Oloukou Freedy, Senou Elie, Yadouleton Anges, Int. J. Biosci. 27(5), 16-23, November 2025.