Welcome to International Network for Natural Sciences | INNSpub

Paper Details

Research Paper | February 1, 2013

| Download 4

Optimization studies on electrochemical and biosorption treatment of effluent containing nitro benzene by RSM

P. SivaKumar, D. Prabhakaran, T. Kannadasan, S. Karthikeyan

Key Words: Dairy cow, Biochemical profile, Negative energy balance, Post partum, Reproduction

Int. J. Biosci.3(2), 1-7, February 2013

DOI: http://dx.doi.org/10.12692/ijb/3.2.1-7


IJB 2013 [Generate Certificate]


A novel process combining Electrochemical Oxidation and Biosorption treatment was presented for
Nitrobenzene abatement. The electrochemical oxidation was investigated batch-wise in the presence of NaCl (2gL-1) electrolyte with lead as anode and copper as cathode electrodes. The conditions were optimized using response surface methodology (RSM), which result in 76.4% reduction of COD was found to be maximum and the optimum conditions were satisfied at current density 3.56 A dm-2, time 3 hours, flow rate 40 L hr -1, volume 9 L occur at minimum power consumption of 30.3 kWhr / kg COD. It is followed by biosorption treatment in the presence of biosorbents such as maize and rice stems at 15 g L-1. From this study it was observed that the maximum % of COD reduction was 97.7 % for the optimized time 4 days and volume 6 L for pretreated effluent containing nitrobenzene.


Copyright © 2013
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Optimization studies on electrochemical and biosorption treatment of effluent containing nitro benzene by RSM

Hartter DR. 1985. The use and importance of nitroaromatic chemicals in the chemical industry. In Toxicity of Nitroaromatic Compounds – Chemical Industry Institute of Toxicology series. 1-13.

Lin ZX, Zheng FX. 2003. Study on adsorption process for nitrobenzene on water hyacinth root. Shanghai Environmental Sciences 12, 703-709, http://dx.doi.org/10.1021/ie0308487

Norvell Nelson. 2002. Electrochemical destruction of organic hazardous wastes. Platinum Metals Review 46(1), 18-23.

Panizza M, Bocca P, Cerisola G. 2000. Electrochemical treatment of wastewater containing polyaromatic organic pollutants. Water Research 34, 2601-2605, http://dx.doi.org/10.1016/S0043-1354(00)00145-7

Radha KV, Sridevi V, Kalaivani K. 2009. Electrochemical oxidation for the treatment of textile industry wastewater. Bioresource Technology 100(2), 987–990, http://dx.doi.org/10.1016/j.biortech.2008.06.048

Rajeshwar K, Ibanez JG. 1997. Fundamentals and Application in Pollution Abatement. Academic Press, ISBN: 9780125762601.

Rajeshwar K, Ibanez JG, Swain GM. 1994. Electrochemistry and the environment. Journal of Applied Electrochemistry 24(11), 1077–1091.

Robinson T, Chandran B, Nigam P. 2005. Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Research 36, 2824–2830, http://dx.doi.org/10.1016/S0043-1354(01)00521-8

Shengrui Wang, Suwen Yang, Xiangcan Jin, Liangke Liu, Fengchang Wu. 2010. Use of low cost crop biological wastes for the removal of Nitrobenzene from water. Desalination 264, 32-36, http://dx.doi.org/10.1016/j.desal.2010.06.075

Yousuf M, Mollah A, Schennach R, Parga JR, Cocke DL. 2001. Electro coagulation (EC)-science and applications. Journal of Hazardous Materials 84, 29–41, http://dx.doi.org/10.1016/S0304-3894(01)00176-5

Yu-Ping Li, Hong-Bin Cao, Chen-Ming Liu, Yi Zhang. 2006. Electrochemical reduction of nitrobenzene at carbon nanotube electrode. Journal of Hazardous Materials 148, 158-163, http://dx.doi.org/10.1016/j.jhazmat.2007.02.021

Zhao XK, Yang GP, Gao XC. 2003. Studies on the sorption behaviors of nitrobenzene on marine sediments. Chemosphere 52(5), 917-25.


Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background