Optimized guide RNA design and evaluation of CRISPR/Cas9 cleavage efficiency in LEP gene knockout

Paper Details

Research Paper 01/10/2021
Views (433) Download (42)
current_issue_feature_image
publication_file

Optimized guide RNA design and evaluation of CRISPR/Cas9 cleavage efficiency in LEP gene knockout

Nguyen Le Tram Anh, Au Duong Tuyet Mai, Nguyen Thi Thuong Huyen, Thai Ke Quan, Nguyen Dang Quan
Int. J. Biosci.19( 4), 193-206, October 2021.
Certificate: IJB 2021 [Generate Certificate]

Abstract

Streptococcus pyogenes (SpCas9)-derived CRISPR/Cas9 system (SpCas9) is now a valuable tool for gene-editing technology, although their widespread applications is obstructed by a backwardness of knowledge about the activity of guide RNA (gRNA). A specific gRNA must maximize on-target (effective Cas protein guidance) while minimizing off-target sites. Balancing these two requirements is a challenging task. Therefore, the optimization of the sgRNA design is essential for the application of CRISPR/Cas9 towards knockout gene modeling, significantly lowering prices and timeoptimizing to generate genetically modified animals. In this study, sgRNAs had been screened and validated in silico before inserted into the pX330 vectors in vitro validation. We randomly screened 468 single-stranded RNA sequences in the protein-coding regions of the lep gene. The sgRNAs were evaluated for their pairing in the target sequence region and validated for genomic random pairing activity. Next, we determined their activity on the pX330 plasmid by assessing the fluorescence expression in the HEK293 cell line. Of 468 screened sgRNAs, two sgRNA 28 and sgRNA 95 showed the most specific shear potential in vitro model. These sgRNAs will be checked further for production of CRISPR/Cas-generated lep KO mice as animal model for studying obesity and diabetes in the future.

VIEWS 55

Bortesi L, Zhu C, Zischewski J, Perez L, Bassié L, Nadi R, Forni G, Lade SB, Soto E, Jin X. 2016. Patterns of CRISPR/Cas9 activity in plants, animals and microbes Plant biotechnology journal 14(12), 2203-2216. http://dx.doi.org/10.1111/ pbi.

Bradford J, Perrin D. 2019. A benchmark of computational CRISPR-Cas9 guide design methods PLoS computational biology 15(8), e1007274.

Bruegmann T, Deecke K, Fladung M. 2019. Evaluating the efficiency of gRNAs in CRISPR/Cas9 mediated genome editing in poplars International journal of molecular sciences 20(15), 3623.

Cohen J. 2016 “‘Any idiot can do it.’ Genome editor CRISPR could put mutant mice in everyone’s reach.” Science. Retrieved Nov. 3, 2016, from https://www. sciencemag.org/news/2016/11/any-idiot-can-do-it-genome-editor-crispr-could-put-mutant-mice-everyones-reach.

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA. 2013. Multiplex genome engineering using CRISPR/Cas systems Science 339(6121), 819-823.

Deshpande K, Vyas A, Balakrishnan A, Vyas D. 2015. Clustered regularly interspaced short palindromic repeats/Cas9 genetic engineering: robotic genetic surgery American journal of robotic surgery 2(1), 49-52. http://dx.doi.org/10.1166/ajrs.

Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R. 2016. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 Nature biotechnology 34(2), 184-191.

Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE. 2014. Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation Nature biotechnology 32(12), 1262-1267. http://dx.doi.org/10.1038 /nbt.

Ellett JD, Evans ZP, Zhang G, Chavin KD, Spyropoulos DD. 2009. A Rapid PCR‐based Method for the Identification of ob Mutant Mice Obesity 17(2), 402-404. http://dx.doi.org/10.1038.

Fujihara Y, Ikawa M. 2014. CRISPR/Cas9-based genome editing in mice by single plasmid injection. Methods in enzymology, Elsevier 546, 319-336. http://dx.doi.org/10.1016/B978-0-12-801185-015-5.

Hajiahmadi Z, Movahedi A, Wei H, Li D, Orooji Y, Ruan H, Zhuge Q. 2019. Strategies to increase on-target and reduce off-target effects of the CRISPR/Cas9 system in plants International journal of molecular sciences 20(15), 3719. http:// dx.doi. org/ 10.3390 /ijms20153719.

Hall B, Cho A, Limaye A, Cho K, Khillan J, Kulkarni AB. 2018. Genome editing in mice using CRISPR/Cas9 technology Current Protocols in Cell Biology 81(1), e57. http://dx.doi.org /10.1002 57.

Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering Cell 157(6), 1262-1278. http://dx.doi.org /10.1016 /j.cell.2014.05.010.

Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases Nature biotechnology 31(9), 827-832. http://dx.doi.org/10.1038/nbt.2647.

Jiang F, Doudna JA. 2017. CRISPR–Cas9 structures and mechanisms Annual review of biophysics 46, 505-529. http://dx.doi.org/10.1146 /annurev-biophys-062215-010822.

Kanasaki K, Koya D. 2011. Biology of obesity: lessons from animal models of obesity BioMed Research International 2011. http://dx.doi.org.

Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E. 2016. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering Nucleic acids research 44(W1), W272-W276. http://dx.doi.org/10.1093/nar/gkw398.

Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome Genome biology 10(3), R25.

Liu G, Zhang Y, Zhang T. 2020. Computational approaches for effective CRISPR guide RNA design and evaluation Computational and Structural Biotechnology Journal 18, 35-44.

Mashiko D, Fujihara Y, Satouh Y, Miyata H, Isotani A, Ikawa M. 2013. Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA Scientific reports 3, 3355.

Mashiko D, Young SA, Muto M, Kato H, Nozawa K, Ogawa M, Noda T, Kim YJ, Satouh Y, Fujihara Y. 2014. Feasibility for a large scale mouse mutagenesis by injecting CRISPR/Cas plasmid into zygotes Development, growth & differentiation 56(1), 122-129. http://dx.doi.org/10.1111/dgd.12113.

Mizuno S, Dinh TTH, Kato K, Mizuno-Iijima S, Tanimoto Y, Daitoku Y, Hoshino Y, Ikawa M, Takahashi S, Sugiyama F. 2014. Simple generation of albino C57BL/6J mice with G291T mutation in the tyrosinase gene by the CRISPR/Cas9 system Mammalian genome 25(7-8), 327-334.

Moon HS, Dalamaga M, Kim SY, Polyzos SA, Hamnvik OP, Magkos F, Paruthi J, Mantzoros CS. 2013. Leptin’s role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals Endocrine reviews 34(3), 377-412.

Mori Y, Yoshida Y, Satoh A, Moriya H. 2020. Development of an experimental method of systematically estimating protein expression limits in HEK293 cells Scientific reports 10(1), 1-11. http://dx.doi.org/10.1038/s41598-020-61646-3.

Naeem M, Majeed S, Hoque MZ, Ahmad I. 2020. Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing Cells 9(7), 1608. http://dx.doi.org/10.3390 /cells9071608.

Pelletier S, Gingras S, Green DR. 2015. Mouse genome engineering via CRISPR-Cas9 for study of immune function Immunity 42(1), 18-27. http://dx. doi.org/10.1016/j.immuni.2015.01.004.

Roh Ji, Lee J, Park SU, Kang YS, Lee J, Oh AR, Choi DJ, Cha JY, Lee HW. 2018. CRISPR-Cas9-mediated generation of obese and diabetic mouse models Experimental animals 17-0123. http:// dx.doi.org /10.1538/expanim.17-0123.

Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells Science 343(6166), 84-87. http://dx.doi.org /10. 1126/science.1247005.

Sledzinski P, Nowaczyk M, Olejniczak M. 2020. Computational Tools and Resources Supporting CRISPR-Cas Experiments Cells 9(5), 1288. http://dx.doi.org/10.3390/cells9051288.

Spiegler S, Rath M, Much CD, Sendtner BS, Felbor U. 2019. Precise CCM1 gene correction and inactivation in patient‐derived endothelial cells: Modeling Knudson’s two‐hit hypothesis in vitro Molecular Genetics & Genomic Medicine 7(7), e00755. http://dx.doi.org/10.1002/mgg3.755.

Sung YH, Jin Y, Kim S, Lee HW. 2014. Generation of knockout mice using engineered nucleases Methods 69(1), 85-93. http://dx.doi.org /10.1016/j.ymeth.2014.02.009.

Tycko J, Myer VE, Hsu PD. 2016. Methods for optimizing CRISPR-Cas9 genome editing specificity Molecular cell 63(3), 355-370. http://dx.doi.org/ 10.1016/j.molcel.2016.07.004.

Wilson LO, O’Brien AR, Bauer DC. 2018. The current state and future of CRISPR-Cas9 gRNA design tools Frontiers in pharmacology 9, 749. http://dx.doi.org/10.3389/fphar.2018.00749.