Perspectives of bioremediation of heavy metals with native plants of the Fabaceae family present in Paraguay
Paper Details
Perspectives of bioremediation of heavy metals with native plants of the Fabaceae family present in Paraguay
Abstract
Industrial pollution is a worldwide problem because many effluents do not receive proper treatment before being released into watercourses. In Paraguay, leather tanning is a common industrial activity and its main contaminant is Chromium. This heavy metal accumulates in both soil and water and can be harmful to human health in large quantities. This study presents the native Fabaceae found in Paraguay and highlights those plants found in the Sub-humid Flooded Forest of the Paraguay River which could be explored in future bioremediation assays. On the other hand, the phylogenetic study of the rbcL gene sequences present in the databases showed that Glycine max, a model species of the Fabaceae family, has the closest phylogenetic relationship with Erythrina crista galli, for which gene studies could be carried out to propose new strategies for pollution reduction.
Annan K, Dickson R, Nooni I, Amponsah I. 2013. The heavy metal contents of some selected medicinal plants sampled from different geographical locations. Pharmacognosy Research 5(2), 103.
Asensio V, Flórido FG, Ruiz F, Perlatti F, Otero XL, Ferreira TO. 2018. Screening of native tropical trees for phytoremediation in copper-polluted soils. International Journal of Phytoremediation 20(14), 1456-1463.
Basílico G, Faggi A, de Cabo L. 2018. Tolerance to Metals in Two Species of Fabaceae Grown in Riverbank Sediments Polluted with Chromium, Copper, and Lead. In: Phytoremediation. Cham: Springer International Publishing p. 169-178.
Bhandarkar NK, Kekare MB, Champanerkar P, Vaidya VV. 2008. Determination of Heavy Metals from Bauhinia variegata Using Inductively Coupled Plasma Technique. Nature Environment and Pollution Technology 7(3), 569-570.
Bicalho IC, Tiecher TL, Schneider JM, Trentin E, De Conti L, Ferreira PA. 2018. Growth, biochemical response and nutritional status of Angico-Vermelho (Parapiptadenia rigida (Bentham) Brenan) under the application of soil amendment in Cu-contaminated soil. International Journal of Phytoremediation 20(14), 1380-1388.
Borges MP, Silva DV, Souza M, Silva TS, Teófilo TM da S, da Silva CC. 2021. Glyphosate effects on tree species natives from Cerrado and Caatinga Brazilian biome: Assessing sensitivity to two ways of contamination. Science of the Total Environment 769, 144113.
Branzini A, González RS, Zubillaga M. 2012. Absorption and translocation of copper, zinc and chromium by Sesbania virgata. Journal of Environmental Management 102, 50-54.
Briffa J, Sinagra E, Blundell R. 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6(9), e04691.
Dias LE, Melo RF, Mello JWV, Oliveira JA, Daniels WL. 2010. Growth of seedlings of pigeon pea (Cajanus cajan (l.) millsp), wand riverhemp (Sesbania virgata (cav.) pers.), and lead tree (Leucaena leucocephala (lam.) de wit) in an arsenic-contaminated soil. Revista Brasileira de Ciência do Solo 34(3), 975-983.
García-Salgado S, García-Casillas D, Quijano-Nieto MA, Bonilla-Simón MM. 2012. Arsenic and Heavy Metal Uptake and Accumulation in Native Plant Species from Soils Polluted by Mining Activities. Water, Air, & Soil Pollution 223(2), 559-572.
Ghosh A, Islam T. 2016. Genome-wide analysis and expression profiling of glyoxalase gene families in soybean (Glycine max) indicate their development and abiotic stress specific response. BMC Plant Biology 16(1), 87.
Gomes MP, Carvalho M, Carvalho GS, Marques TCLLSM, Garcia QS, Guilherme LRG. 2013. Phosphorus Improves Arsenic Phytoremediation by Anadenanthera peregrina by Alleviating Induced Oxidative Stress. International Journal of Phytoremediation 15(7), 633-646.
Gomes MP, Duarte DM, Miranda PLS, Barreto LC, Matheus MT, Pacheco FV. 2011. Utilization of Anadenanthera peregrina (Fabaceae) as arsenic – phytorremediator species. In: X Congresso de Ecologia do Brasil, 16 a 22 de Setembro de 2011. Sao Lourenco, p. 1-2.
Gomes MP, Marques RZ, Nascentes CC, Scotti MR. 2020. Synergistic effects between arbuscular mycorrhizal fungi and rhizobium isolated from As-contaminated soils on the As-phytoremediation capacity of the tropical woody legume Anadenanthera peregrina. International Journal of Phytoremediation 22(13), 1362-1371.
Gomes MP, Moreira Duarte D, Silva Miranda PL, Carvalho Barreto L, Matheus MT, Garcia QS. 2012. The effects of arsenic on the growth and nutritional status of Anadenanthera peregrina, a Brazilian savanna tree. Journal of Plant Nutrition and Soil Science 175(3), 466-473.
Gonzalez-Villalobos MA, Martinez-Trinidad T, Alarcón A, Plascencia Escalante FO. 2021. Toxicidad del plomo en la germinación y el crecimiento de plántulas de Parkinsonia aculeata L. Revista Mexicana de Ciencias Forestales 12(66), 1-7.
He Z, Shentu J, Yang X, Baligar VC, Zhang T, Stoffella PJ. 2015. Heavy Metal Contamination of Soils: Sources, Indicators, and Assessment. Journal of Environmental Indicators 9, 17-18.
Hou D, O’Connor D, Igalavithana AD, Alessi DS, Luo J, Tsang DCW. 2020. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth & Environment 1(7), 366-381.
Huang L, Li Y, Zhao M, Chao Y, Qiu R, Yang Y. 2018. Potential of Cassia alata L. Coupled with Biochar for Heavy Metal Stabilization in Multi-Metal Mine Tailings. International Journal of Environmental Research and Public Health 15(3), 494.
Jara-Medina JE. 2018. Desarrollo de una metodología de recuperación de suelos altamente contaminados con metales pesados utilizando remediación fisicoquímica y fitorremediación. PhD thesis, Universidad Andrés Bello, Chile 43-45.
Kanwal A, Ali S, Farhan M. 2019. Heavy metal phytoextraction potential of indigenous tree species of the family Fabaceae. International Journal of Phytoremediation 21(3), 251-258.
MADES. 2015. Nivel de Referencia de las Emisiones Forestales por Deforestación en la República del Paraguay para pago por resultados de REDD+ bajo la CMNUCC, p. 85
Marco R, Silva RF, Missio EL, Ros CO Da, Grolli AL, Viel P. 2021. Erythrina crista-galli L. e turfa na fitorremediação de cobre no solo. Ciência Florestal 31(1), 475-490.
Marques DM, Silva AB, Mantovani JR, Pereira DS, Souza TC. 2018. Growth and physiological responses of tree species (Hymenaea courbaril L., Peltophorum dubium (Spreng.) Taub. and Myroxylon peruiferum L. F.) exposed to different copper concentrations in the soil. Revista Árvore 42(2).
Masindi V, Muedi KL. 2018. Environmental Contamination by Heavy Metals. In: Heavy Metals, p. 76082.
Mensah MB, Lewis DJ, Boadi NO, Awudza JAM. 2021. Heavy metal pollution and the role of inorganic nanomaterials in environmental remediation. Royal Society Open Science 8(10).
Meyer ST, Castro SR, Fernandes MM, Soares AC, de Souza Freitas GA, Ribeiro E. 2016. Heavy-metal-contaminated industrial soil: Uptake assessment in native plant species from Brazilian Cerrado. International Journal of Phytoremediation 18(8), 832-838.
Nuralykyzy B, Wang P, Deng X, An S, Huang Y. 2021. Heavy Metal Contents and Assessment of Soil Contamination in Different Land-Use Types in the Qaidam Basin. Sustainability 13(21), 12020.
Paiva LB, Correa SF, Santa-Catarina C, Floh EIS, da Silva MG, Vitória AP. 2014. Ecophysiological and biochemical parameters for assessing Cr+6 stress conditions in Pterogyne nitens Tul.: new and usual methods for the management and restoration of degraded areas. Environmental Engineering and Management Journal 13(12), 3073-3081.
Perez de Molas LF. 2016. Manual de Familias y Géneros de árboles del Paraguay. San Lorenzo: Organización de las Naciones Unidas para la Alimentación y Agricultura, p. 228.
Pizarro R, Flores JP, Tapia J, Valdés-Pineda R, González D, Morales C. 2015. Forest species in the recovery of soils contaminated with copper due to mining activities. Revista Chapingo Serie Ciencias Forestales y del Ambiente XXII (1), 29-43.
Quintana SA, Grossi CEM, Espinoza R, Ulloa RM. 2021. Plantico, an R statistical analysis package for plant biometric parameters. Revista Cubana de Ciencias Informáticas 15(4), 45–60.
Rangel W, Schneider J, Costa ET, Soares CRFS, Guilherme LRG, Moreira FM. 2014. Phytoprotective Effect of Arbuscular Mycorrhizal Fungi Species Against Arsenic Toxicity in Tropical Leguminous Species. International Journal of Phytoremediation 16(8), 840-858.
Scheid DL, Marco R, Silva RF, Ros CO, Grolli AL, Missio EL. 2018. Peat is a growth and tolerance inducer of Erythrina crista-galli in soil contaminated with zinc. Revista de Ciências Agrárias 41(4), 924-932.
Scheid DL, Marco RD, Grolli AL, Silva RF, Ros CO, Andreazza R. 2017. Growth, tolerance and zinc accumulation in Senna multijuga and Erythrina crista-galli seedlings. Revista Brasileira de Engenharia Agrícola e Ambiental 21(7), 465-470.
Shahid SS, Mohammad M, Shaheed Siddiq Z. 1999. Effect of Cadmium, Chromium and Lead on Seed Germination, Early Seedling Growth and Phenolic Contents of Parkinsonia aculeata L. and Pennisetum americanum (L.) Schumann. Pakistan Journal of Biological Sciences 2(4), 1307-1313.
Sharma R, Sarswat A, Pittman CU, Mohan D. 2017. Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods. RSC Advances 7(14), 8606-8624.
Silva RF, Antoniolli ZI, Grolli AL, Scheid DL, Bertollo GM, Missio EL. 2018. Growth and tolerance of Enterolobium contortisiliquum Vell. seedlings grown in contaminated soil with zinc. Ciência Florestal 28(3), 979-986.
Silva RF, Antoniolli ZI, Lupatini M, Trindade LL, Silva AS. 2010. Tolerância de mudas de canafístula (Peltophorum dubium (Spreng.) Taub.) inoculada com Pisolithus microcarpus a solo com excesso de cobre. Ciência Florestal 20(1), 147-156.
Silva RF, Lupatini M, Antoniolli ZI, Leal LT, Moro Junior CA. 2011. Comportamento de Peltophorum dubium (Spreng.) Taub., Parapiptadenia rigida (Benth.) Brenan e Enterolobium contortisiliquum (Vell.) Morong cultivadas em solo contaminado com cobre. Ciência Florestal 21(1), 103-110.
Silva RF, Ros CO, Dellai A, Grolli AL, Shaid DL, Viel P. 2016. Interferência de doses de cobre no crescimento e na qualidade de mudas de Bauhinia forficata Link, Pterogyne nitens Tul E Enterolobium contortisiliquum Vell. Ciência Florestal 26(2), 647-655.
Silva RF, Ros CO, Scheid DL, Grolli AL, Marco R, Missio EL. 2015. Copper translocation and tolerance in seedlings of tree species grown in contaminated soil. Revista Brasileira de Engenharia Agrícola e Ambiental 19(11), 1093-1099.
Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Battistuzzi FU, editor. Molecular Biology and Evolution 38(7), 3022-3027.
Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z. 2020. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Frontiers in Plant Science. 2020.00359.
Zahoor M, Irshad M, Rahman H, Qasim M, Afridi SG, Qadir M. 2017. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7. Ecotoxicology and Environmental Safety 142, 139-149.
Zazouli MA, Mahdavi Y, Bazrafshan E, Balarak D. 2014. Phytodegradation potential of bisphenol A from aqueous solution by Azolla Filiculoides. Journal of Environmental Health Science and Engineering 12(1), 66.
Zgorelec Z, Bilandzija N, Knez K, Galic M, Zuzul S. 2020. Cadmium and Mercury phytostabilization from soil using Miscanthus × giganteus. Scientific Reports 10(1), 6685.
Silverio Andrés Quintana, Magaliz Reyes, Patricia Mereles, Cecilia Eugenia María Grossi, Rita Maria Ulloa (2022), Perspectives of bioremediation of heavy metals with native plants of the Fabaceae family present in Paraguay; JBES, V20, N4, April, P30-39
https://innspub.net/perspectives-of-bioremediation-of-heavy-metals-with-native-plants-of-the-fabaceae-family-present-in-paraguay/
Copyright © 2022
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0