Welcome to International Network for Natural Sciences | INNSpub

Paper Details

Research Paper | June 1, 2021

| Download

Phenotypic detection of Metallo-β-Lactamase (MBL) in Imipenem-Resistant Pseudomonas aeruginosa, a study from a tertiary care hospital in Peshawar, Pakistan

Numan Saleh Zada, Fazli Bari, Zulfiqar Ali Malik, Fareeha Hameed Bangash, Rashid Mansoor, Aamer Ali Shah, Malik Badshah, Samiullah Khan

Key Words:

Int. J. Biosci.18(6), 120-128, June 2021

DOI: http://dx.doi.org/10.12692/ijb/18.6.120-128


IJB 2021 [Generate Certificate]


Production of metallo-β-Lactamase (MBL) by Pseudomonas aeruginosa has emerged as one of the most clinically worrisome resistance mechanisms. The present study aimed phenotypic detection of MBL production in clinical isolates of Imipenem resistant P. aeruginosa. About 245 non-duplicated P. aeruginosa isolates were collected during a ten-month study duration from a tertiary care hospital of Peshawar, Pakistan. The isolation of the P. aeruginosa isolates was done from high vaginal swab, pus, urine, sputum, blood, and other body fluids. Antibiotic susceptibility profile of the tested isolates was investigated by Kirby-Bauer disc diffusion method. The isolates were further screened for MBL production by Imipenem- EDTA combined disc test (CDT). Among 245 clinical isolates, percentage of outdoor and admitted patients were 62% and 37%, whereas gender-wise ratio includes 57% male and 42% female patients respectively. Burn unit showed highest number of P. aeruginosa isolates among admitted patients, followed by endocrinology, surgical, orthopedics, gynecology, urology, ENT, skin, pediatrics, and medical ward. Out of total isolates, 15% isolates showed resistance towards Imipenem by Kirby-Bauer method. Thirty-two (13%) out of 245 isolates were found positive for MBL production by CDT method.  All MBL producers showed a notable resistance against imipenem, cefepime, aztreonam while sensitivity was observed towards all the other tested antibiotics. The P. aeruginosa isolates are rapidly developing resistance against effective therapeutic agents especially carbapenem, which is of serious concern. Therefore, rapid detection of MBLs in P. aeruginosa isolates is essential for controlling the spread of MBL-encoded genes and efficient treatment of patients.


Copyright © 2021
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Phenotypic detection of Metallo-β-Lactamase (MBL) in Imipenem-Resistant Pseudomonas aeruginosa, a study from a tertiary care hospital in Peshawar, Pakistan

Baltch AL, Smith RP. 1994. Pseudomonas aeruginosa: infections and treatment. Informa Health Care, UK, p83-84, ISBN0-8247-9210-6.

Bashir D, Thokar MA, Fomda BA, Bashir G, Zahoor D, Ahmad S, Toboli AS. 2011. Detection of metallo-beta-lactamase (MBL) producing Pseudomonas aeruginosa at a tertiary care hospital in Kashmir. African journal of microbiology research 5, 164-172. https://doi.org/10.5897/AJMR10.694

Birnbaum J, Kahan FM, Kropp H, Macdonald JS. 1985. Carbapenems, a new class of beta-lactam antibiotics: discovery and development of imipenem/cilastatin. The American journal of medicine 78, 3-21. https://doi.org/10.1016/0002-9343(85)9009.7-X

Breilh D, Texier-Maugein J, Allaouchiche B, Saux MC, Boselli E. 2013. Carbapenems. Journal of Chemotherapy 25, 1-17. https://doi.org/10.1179/1973947812Y.000000003

Franklin C, Liolios L, Peleg AY. 2006. Phenotypic detection of carbapenem-susceptible metallo-β-lactamase-producing gram-negative bacilli in the clinical laboratory. Journal of clinical microbiology 44, 3139-3144. https://doi.org/10.1128/JCM.00879-06.

Giamarellou H, Poulakou G. 2009. Multidrug-resistant gram-negative infections. Drugs 69, 1879-1901. https://doi.org/10.2165/11315690-000000000-00000

Hemalatha V, Sekar U, Kamat V. 2005. Detection of metallo betalactamase producing Pseudomonas aeruginosa in hospitalized patients. Indian Journal of Medical Research 122, 148.

Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK. 2008. Antimicrobial‐resistant pathogens associated with healthcare‐associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infection control and hospital epidemiology 29, 996-1011.

Kazmierczak KM, Rabine S, Hackel M, McLaughlin RE, Biedenbach DJ, Bouchillon SK, Sahm DF, Bradford PA. 2016. Multiyear, multinational survey of the incidence and global distribution of metallo-β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy 60, 1067-1078. https://doi.org/10.1128/aac.02379-15

Kumar SH, De AS, Baveja SM, Gore MA. 2012. Prevalence and risk factors of metallo β-lactamase producing Pseudomonas aeruginosa and Acinetobacter species in burns and surgical wards in a tertiary care hospital. Journal of laboratory physicians 4, 39. https://doi.org/10.4103/0974-2727.98670.

Lagatolla C, Tonin EA, Monti-Bragadin C, Dolzani L, Gombac F, Bearzi C, Edalucci E, Gionechetti F, Rossolini GM. 2004. Endemic carbapenem-resistant Pseudomonas aeruginosa with acquired metallo-β-lactamase determinants in European hospital. Emerging infectious diseases 10, 535. https://doi.org/10.3201/eid1003.020799.

Patzer JA, Walsh TR, Weeks J, Dzierżanowska D, Toleman MA. 2009. Emergence and persistence of integron structures harbouring VIM genes in the Children’s Memorial Health Institute, Warsaw, Poland, 1998–2006. Journal of antimicrobial chemotherapy 63, 269-273. https://doi.org/10.1093/jac/dkn512

Pfaller MA, Herwaldt LA. 1997. The clinical microbiology laboratory and infection control: emerging pathogens, antimicrobial resistance, and new technology. Clinical infectious diseases  858-870. https://www.jstor.org/stable/4481304

Pitout JD, Chow BL, Gregson DB, Laupland KB, Elsayed S, Church DL. 2007. Molecular epidemiology of metallo-β-lactamase-producing Pseudomonas aeruginosa in the Calgary Health Region: emergence of VIM-2-producing isolates. Journal of clinical microbiology 45, 294-298. https://doi.org/10.1128/JCM.01694-06

Queenan AM, Bush K. 2007. Carbapenemases: the versatile β-lactamases. Clinical microbiology reviews 20, 440-458. https://doi.org/10.1128/CMR.00001-07

Rasmussen BA, Bush K. 1997. Carbapenem-hydrolyzing beta-lactamases. Antimicrobial agents and chemotherapy 41, 223. https://doi.org/10.1128/AAC.41.2.223.

Ryan KJ, Ray CG, RAY, C. G. 2004. Medical microbiology. McGraw Hill 4, 370.

Saderi H, Lotfalipour H, Owlia P, Salimi H. 2010. Detection of metallo-β-lactamase producing Pseudomonas aeruginosa isolated from burn patients in Tehran, Iran. Laboratory Medicine 41, 609-612. https://doi.org/10.1309/LMQJF9J3T2OAACDJ

Sharma S, Sikka R, Deep A, Mittal S, Sharma A, Chaudhary U. 2015. Comparative study of three phenotypic methods for detection of metallo-β-lactamases in clinical isolates of pseudomonas aeruginosa. International Journal of Current Microbiology and Applied Sciences 4, 366-370.

Walsh TR, Toleman MA, Poirel L, Nordmann P. 2005. Metallo-β-lactamases: the quiet before the storm. Clinical microbiology reviews 18, 306-325. https://doi.org/10.1128/CMR.18.2.306-325.2005

 Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y. 2002. Imipenem-EDTA disk method for differentiation of metallo-β-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. Journal of clinical microbiology 40, 3798-3801. https://doi.org/10.1128/JCM.40.10.3798-3801.2002


Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background