Physico-chemical characterization of soils in two peri-urban lowlands: Implications for the sustainability of rice cultivation in Korhogo (northern Côte d’Ivoire)
Paper Details
Physico-chemical characterization of soils in two peri-urban lowlands: Implications for the sustainability of rice cultivation in Korhogo (northern Côte d’Ivoire)
Abstract
In a context of heavy dependence on rice cultivation and intensifying land pressures in Ivorian peri-urban areas, this study analyzes the physico-chemical properties of two lowlands (Logokaha and Natio) located on the outskirts of Korhogo. The aim is to identify edaphic constraints likely to limit rice-growing productivity, and to propose sustainable management options. The methodology is based on stratified sampling according to longitudinal (upstream, median, downstream) and transverse (center, hydromorphic zones) topographical units. Samples were subjected to granulometric and chemical analysis, assessing texture, pH, nitrogen, phosphorus, potassium, organic matter and cation exchange capacity (CEC). The results reveal considerable textural variability between sites and topographical units. The soils of Logokaha, with their silty-clay texture, offer better rice-growing potential than those of Natio, which are sandier. Chemically, both lowlands have moderate acidity but marked deficits in total nitrogen, assimilable phosphorus and organic matter. CEC is generally low, reflecting limited fertility. In addition, some areas show high sodium levels, representing a risk of structural degradation, especially in hydromorphic conditions. We recommend boosting fertility with organic inputs (compost, manure) and targeted mineral fertilizers. Acidity correction and optimized water management should complement these interventions to sustainably improve the productivity and agroecological resilience of the lowlands studied.
Alloway BJ. 2008. Micronutrient deficiencies in global crop production. Springer Science & Business Media. 370 P
Alphonse AK, Didier-Martial YS, Franck OZ, Albert YK. 2020. Valorization of Agro-industrial Bio-waste from Seed Cotton in the Restoration of Degraded Soils in the District of Korhogo in Northern Côte d’Ivoire. Journal of Experimental Agriculture International 41(6), 1-10.
Bado VB, Djaman K, Mel VC. 2018. Developing fertilizer recommendations for rice in Sub-Saharan Africa, achievements and opportunities. Paddy and Water Environment 16(3), 571-586.
Baize D, Ducommun C. 2014. Reconnaître les sols de zones humides. Etude et gestion des sols 21, 85-101.
Batjes NH. 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science 47(2), 151-163.
Baxter S. 2007. Guidelines for soil description. Rome: Food and Agriculture Organization of the United Nations (2006). Experimental Agriculture 43(2), 263-264.
Becker M, Johnson DE. 1999. Rice yield and productivity gaps in irrigated systems of the forest zone of Côte d’Ivoire. Field Crops Res 60, 201-208.
Bonneau M. 2001. Un siècle d’enseignement et de recherche en pédologie forestière [France]. Revue Forestière Française 53, 1-5.
Boulet R. 1978. Existence de systèmes à forte différenciation latérale en milieu ferrallitique guyanais: un nouvel exemple de couvertures pédologiques en déséquilibre. Science du Sol 2, 75-92.
Bouman BAM, Lampayan RM, Tuong TP. 2007. Water management in irrigated rice: coping with water scarcity. Los Baños (Philippines): Inter-national Rice Research Institute. 54 p
Brady NC, Weil R. 2017. The Nature and Properties of Soils. Harlow, England, Pearson. 19-50.
Bravard S, Righi D. 1991. Characterization of fulvic and humic acids from an Oxisol-Spodosol toposequence of Amazonia, Brazil. Geoderma 48, 1-2. 151-162.
Bremner JM. 1965. Total nitrogen. In: Black, C. A. (Ed.), Methods of Soil Analysis Part II. ASA, Madison, 1149-1178.
Dobermann A, Fairhurst T. 2000. Rice: Nutrient disorders & Nutrient Management. Potash and Phosphate Institute, Phosphate Institute of Canada and International Rice Research Institute (Editor), First edition. Oxford Graphic Printers Pte Ltd, 191 p.
Fageria NK. 2007. Yield physiology and riec. J Plant Nutr 30, 843-879.
Gee GW, Bauder JW. 1986. Particle-size Analysis. In : Klute A (eds) Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. Agronomy 9. Second Edition. ASA, SSSA, Madison, 383-409.
Godwin RJ. 1992. Le genie agricole au service du developpement: production vivriere en zones de faible pluviosite: facons culturales appropriees. Food & Agriculture Org. 83, 113 p.
Kanaté L. 2022. Effets comparés des doses de Costus afer et de fertilisant conventionnel en riziculture de bas-fond sur sol tourbeux. Mémoire de Master, Université Félix Houphouët-Boigny, 43 p.
Koné AW. 2022. Soil organic carbon storage and contribution of management strategies to the “4 per 1000” target in a wet savanna, Côte d’Ivoire. Regional Environmental Change 22(1), 1-4.
Landon JR. 2014. Booker tropical soil manual : a handbook for soil survey and agricultural land evaluation in the tropics and subtropics. Routledge. 530 p.
Mabasa HZ. 2019. Spatial variability of aggregate stability, size distribution, erosion and runoff in selected soils in South Africa, 57 p.
Mench M, Chartier S, Girardi S, Solda PAUL, Folkert VO, Baize D. 2009. Exposition de végétaux aux éléments traces, évaluation et gestion des risques. Devenir et Effets des Contaminations Métalliques dans les Agrosystèmes et Écosystèmes Terrestres Péri-industriels (P. Cambier, C. Schvartz, F. van Oort, coord), 85-116.
Nelson DW, Sommer LE. 1982. Total carbon, organic C and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis. Part 2. Chemical and microbiological Properties. Agronomy 9, Second Edition. ASA, SSSA, Madison, 539-577.
Robinson GW. 1932. A new method for the mechanical analysis of soils and other dispersions. Journal of the Agricultural Science 22(3), 303-321.
Sanchez PA, Couto W, Buol SW. 1982. The fertility capability soil classification system: interpretation, applicability and modification. Geoderma 27(4), 283-309.
Sempéré R, Yoro SC, Van Wambeke F, Charrière, B. 2000. Microbial decomposition of large organic particles in the northwestern Mediterranean Sea: an experimental approach. Marine Ecology Progress Series 198, 61-72.
Thomas GW. 1982. Exchangeable cations. In: Page, A. L. (Ed.), Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. ASA, SSSA, Madison, WI, 159-165.
Walkley A, Black IA. 1934. An examination of the Degtjareff method for determining soil organic matter. Soil Science 37, 29-38.
Konan Kouamé Firmin, Nangah Krogba Yves, Touré Béssimory, Coulibaly Tchowa Bintou, Kouassi Anoma Jonathan Christian, Bayala Roger, Bakayoko Sidiky, 2025. Physico-chemical characterization of soils in two peri-urban lowlands: Implications for the sustainability of rice cultivation in Korhogo (northern Côte d’Ivoire). Int. J. Biosci., 27(2), 270-279.
Copyright © 2025 by the Authors. This article is an open access article and distributed under the terms and conditions of the Creative Commons Attribution 4.0 (CC BY 4.0) license.