Welcome to International Network for Natural Sciences | INNSpub

Paper Details

Research Paper | January 1, 2016

VIEWS 1
| Download 1

Physiological and biochemical characterization of Cork Oak Seedlings (Quercus suber.L) in Tunisia

Abdessamad Abdessalem, Saidi Ahmed, Chkioua Chaker, Ksontini Mustapha

Key Words:


J. Bio. Env. Sci.8(1), 110-123, January 2016

Certification:

JBES 2016 [Generate Certificate]

Abstract

The cork oak is native forest species, the most represented in Tunisia and especially to Mogods Kroumirie. This species is considerable regression estimated at 1.22% of the area per year . Natural regeneration of cork oak seedlings and by rejecting strain encounters strong difficulties mainly because of the great mortality among seedlings. The failure of this regeneration is mainly caused by environmental conditions characteristic of the Mediterranean climate (long dry seasons with hot winds and high temperatures) and by predation and anthropogenic factors. Our study is to analyse the physiological and biochemical responses of seedlings of cork oak, subjected to moderate and severe water stress, which was conducted in nurseries in Tunis in twelve populations of cork oak. The various treatments are used to test the tolerance of the cork oak plants to water stress by biochemical markers such as proline, sugars and starch. The accumulation of sugars is characteristic of woody plants in difficult environmental conditions, as in our experimentation proline and starch can be regarded as a biochemical marker of stress to the cork oak.

VIEWS 1

Copyright © 2016
By Authors and International Network for
Natural Sciences (INNSPUB)
http://innspub.net
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Physiological and biochemical characterization of Cork Oak Seedlings (Quercus suber.L) in Tunisia

Abid H, Selmi K. 1998. La subéraie tunisienne : Importance et orientation pour une gestion durable, Actes séminaire méditerranéen sur la régénération des forêts de chêne liège, Tabarka Tunisie: 22-24 octobre 1996, Ann INRGREF Suppl.

Alaoui-Sossé B, Parmentier C, Dizengremel P, Barnola P. 1994. Rhythmic growth and carbon allocation in Quercus robur. I. Starch and sucrose, Plant Physiol. Biochem. 32, 331 339.

Albouchi A. 1997. Effet du préconditionnement à la carence en eau sur certaines manifestations de l’endurcissement à la sécheresse chez Acacia cyanophylla. Croissance, comportement hydrique et accumulation active des solutés. Thèse de Doctorat en Sciences Biologiques Uni. Tunis II. Fac. Sci. Tunis. 142.

Albouchi A, Sebeïb H, Meznic Majid Y, Hédi El Aounid M. 2001. Influence de la durée d’acclimatation sur l’endurcissement à la sécheresse d’Acacia cyanophylla Lindl. Ann. For. Sci. 58, 519– 528.

Albouchi A, Ghrir R, El Aouni MH. 1977. Endurcissement à la sécheresse et accumulation de glucides solubles et d’acides aminés libres dans les phyllodes d’Acacia cyanophylla Lindl. Ann.Sci.For., 54, 155-168.

Barlow EWR, Boersma L, Young JL. 1976. Root temperature and soil water potential effects on growth and soluble carbohydrates concentration of corn seedlings. Crop Sci. 16, 59 62.

Belhassen E, Monneveux P. 1995. Adaptation génétique face aux contraintes de sécheresse.Cahier Agriculture 4, 251-261.

Belkhodja M. 2000. Proline response of broad bean (Vicia faba L) under salt stress. Egypt. J. Agric. Res. 78, 185-195.

Bertrand A, Paquin R. 1991. Influence de la température d endurcissement sur la tolérance au gel de la luzerne et sa teneur en sucres, amidon et proline. Can. J. Plant Sci. 71, 737-747.

Bouzoubaa Z, El Mourid M, El Gharous M, 2001. Manuel d analyse chimique et biochimique des plantes. Eds ; INRA Maroc.

Chu TM , Jusaitis M, Aspinall D, Paleg LG. 1978. Accumulation of free proline at low temperatures. Physiol Plant, 43, 254-260.

Chunyang H, Kaïoyun W. 2003. Differences in drought microtheca F. meullpopulations. University of Helsinki. Finland. Forest ecology and management 179, 377-385.

Darbyshire B. 1974. The function of the carbohydrate units of three fungal enzymes in their resistance to dehydration. Plant Physiol. 54, 717-721.

De Ronde JA, Cress WA, Krüger GHJ, Strasser RJ, Van Staden J. 2004. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J. Plant. Physiol, 161, 1211-1224.

Decourteix M. 2005. Caractérisations physiologique et moléculaire de transporteurs de saccharose et d hexoses de xylème de noyer (Juglans regia L. cv Franquette) : rôles dans les échanges latéraux de sucres pendant la période non-feuillée. Thèse de docteur d université. Université de Blaise Pascal. 88 p.

Delaa Y. 2003. Utilisation des végétaux dans l’approche ecotoxycologique, thèse de magister à l’université de Mentouri- Constantine, p 172.

Delauney AJ, Verma DPS. 1993. Proline biosynthesis and osmoregulation in plants. Plant J, 4, 215-223, European Scientific Journal August edition 9, 24 ISSN: 1857 – 7881 (Print) e – ISSN 1857- 7431 153.

Dreier W, Göring M. 1974. Der Einfluss hoher Salzkonzentration auf verschiedene physiologische Parameters von Maiswurzeln. Wiss. Z. der Humboldt Univ. Berlin, Reihe/Math. Naturwiss. 23, 641-644.

Dreyer E, Bousquet F, Ducry M. 1990. Use of pressure volume curves in water relations analysis on woody shoots: influence of rehydration and comparison of four European oak species.Annales des Sciences Forestières 47, 284-295 p.

Givnish TJ. 1988. Adaptation to sun vs. shade: a whole-plant perspective. Australian Journal of Plant Physiology 15, 63–92.

Hare PD, Cress WA. 1997. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul, 21, 79-102,

Hasnaoui B. 1991. Régénération naturelle par rejet de souche et par drageonnement d’unesubéraie dans le Nord-Ouest de la Tunisie. XVII (Ecologia Méditerranaea, 79(87), 16-21 p.

Hinckley TM, Pezeshki R. 1982. The stomatal response of red alder and black cottonwood to changing water status. Canadian Journal of Forest Research 12, 761–771.

Hireche Y. 2006. Réponse de la luzerne (Medicago Sativa L) au stress hydrique et à la profodeur de semis .Université Al HadJ Lakdar Hubac, C., Vieira, Da Silva, J. Indicateurs.

Hubac C, Viera Da Silva J. 1980. Indicateurs m6taboliques de contrainte mesologiques. Physiol. Vdg. 18, 45-53.

Hyun DY, Lee IS, Kim DS, Lee YI. 2003. Selection of azetidine-2- carboxylic acid resistant cell lines by in vitro mutagenesis in rice (Oryza sativa L). Journal of Plant Biotechnology 5, 43 – 49.

Kameli A, Losel DM. 1995. Contribution of carbohydrates and solutes to osmotic adjustment in wheat leaves under water stress. J. Plant Physiol., 145, 363–366.

Kinet JM, Benrebiha F, Bouzid S, Laibacar S, Dutuit P. 1998. de réseau atriplex : Allier biotechnologies et écologie pour une sécurité alimentaire accrue en régions arides et semis arides. Cahier d ‘Agricultures 7, 505-509.

Knu, Chen. 1986. Effect of hight température on proline content in tomato floral buds and leaves. Sci, Hortic. 111 (5), 746-750 in chemical abstract.

Kozlowski TT, Kramer PJ, Pallardy SG. 1991. The physiological ecology of woody plants. Academic Press, San Diego, Calif.

Ksontini M. 1996. Etude ecophysiologique des réponses à la contrainte hydrique du chêne liège (Quercus suber) dans le Nord–Tunisie: comparaison avec le chêne Kermès (Q. coccifera) et le chêne zeen (Q.faginea) Thèse université Paris XII Val De Marne, 157 p.

Laplante N. 2003. Paramètres climatiques engendrant le gel des bourgeons chez le bleuet en Corymbe dans la région de Granby (Québec). Université du Québec à Rimouski Travail réalisé dans le cadre du cours Climatologie G2O-250-01, 13-16,

Lewin LG, Sparrow DHB, Aspinal D. 1978. Proline accumulation and grought resistance in barley. 23(8), 12-36.

Loreti E, De Bellis L, Alpi A, Perata P. 2001. Why and how do plant cells sense sugars? Ann Bot 88, 803–812.

Manos PS, Zhou ZK, Cannon CH. 2001. Systematics of Fagaceae: phylogenetic tests of reproductive trait evolution. Int. J. Plant Sci. 162(6), 1361-1379

McCready RM, Guggolz J, Silviera V. Owens HS. 1950. Determination of starch and amylose in vegetables. Anal. Chem., 22, 1156–1158.

Mediavilla S, Escudero A. 2003. Stomatal responses to drought of mature trees and seedlings of two co-occurring Mediterranean oaks. Forest Ecology and Management 187(2-3), 281-294.

Mefti M, Abdelguerfi A, Chebouti A. 1998. Etude de la tolérance à la sécheresse chez quelques populations de Medicago truncatula L.Gaertn. Science (5), 173- 176 p.

Monneveux P, Nemmar M. 1986. Contribution à l’étude de la résistance à la sécheresse chez le blé tendre (Triticum aestivum L.) et chez le blé dur (Triticum durum Desf.) : étude de l’accumulation de la proline aucours du cycle de développement. Agronomie 6, 583-590.

Paleg LG, Douglas TJ, Van Dali A, Keech DB. 1981. Proline, betaine and other organic solutes protect enzymes against heat inactivation. Aust. J. Plant Physiol 8, 107-l 14,

Rached-Kanouni M, Alatou D, Sakr S. 2012. Responses of cork oak seedlings to short-term exposures to low temperatures. American Journal of Scientific Research 59, 28-41,

Rejeb MN. 1992. Etude des mécanismes de résistance à la sécheresse du caroubier (ceratonia siliqual L.). Thèse de doctorat d’état es sciences naturelles Fac. Sci. Tunis. 199 p.

Riazi A, Matruda K, Arslam A. 1985. Water stress induce changes in concentration of proline and other solutes in growing regions. J. Exp. Bot., 36, 1716-1725.

Sakai J, Nohturfft A, Cheng D, Ho YK, Brown MS, Goldstein JL. 1997. Identification of complexes between the COOH-terminal domains of sterol regulatory element binding proteins (SREBPs) and SREBP cleavage-activating protein (SCAP). J. Biol. Chem. 272, 20213–20221.

Sauter JJ, Kloth S. 1987. Changes in carbohydrates and ultrastructure in xylem ray cells of Populus in response to chilling. Protoplasma 137, 45-55.

Slama I, Messedi D, Ghnaya T, Arnould S, Abdelly C. 2004. Effects of water deficit on growth and proline metabolism in Sesuvium portulacastrum. Environmental and Experimental Botany (in press).

Smith RB, Lougheed EC, Franklin EW, Mc Millan I. 1979. The starch iodine test for determining stage of maturation in apples. Canadian Journal of Plant Science, 59, 725-735,

Staub AM. 1963. Extraction, identification et dosages des glucides dans les extraits d’organes et les corps bactériens. In : Techniques de laboratoire, tomes 1 et 2, Masson, Paris, 1307-1366.

Stewart GR, Larher F. 1980. Accumulation of ammo acids and related compounds in relation to environmental stress In: P. K. Stumpf and E. E. Conn, The Biochemistry of Plants, vol. 5, Amino acids and Derivatives (Ed. by B. j . Milflin), Academic. Press London. 17, 609-635.

Sultan SE. 2000. Phenotypic plasticity for plant development, function, and life history. Trends in Plants Science 5 (12), 537-542.

Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF. 1982. The 1982 revised criteria for the classification of systemic lupus erythematosus. 118, 412–416.

Troll W, Lindsley JA. 1955. photometric method for the determination of proline. J. Boil. Chem. 215, 655-660,

Turner NC, Jones MM. 1980. Turgor maintenance by osmotic adjustment. A review and evaluation. In: Adaptation of plants to water and high temperature (Turner N.C. and Kramer P.J. eds) 87 and 454 New York John Wiley and Sons.

Yamaki S. 1992. Distribution of sorbitol, neutral sugars, free amino acids, malic acid and some hydraulic enzymes in vacuoles of apple cotyledons. Plant Cell Physiol., 23, 881-889.

SUBMIT MANUSCRIPT

Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background