Welcome to International Network for Natural Sciences | INNSpub

Paper Details

Research Paper | November 1, 2015

| Download 1

Phytoextraction potential of three endogenous Amaranthaceae species grown on the Akouédo landfill (Abidjan, Côte d’Ivoire)

Messou Aman, Ouattara Pétémanagnan Jean-Marie, Kone Tiangoua, Alangba Sroboa Charles, Coulibaly Lacina

Key Words:

J. Bio. Env. Sci.7(5), 83-95, November 2015


JBES 2015 [Generate Certificate]


The selection of adequate plant species is a prerequisite for cleaning-up trace metal elements contaminated-soils by phytoextraction which is a cost-effective and environmentally-friendly technology. The potential of Amaranthus spinosus, Amaranthus viridis and Alternanthera sessilis to remove metal trace elements from the soil of the Akouédo landfill was investigated. The concentrations of metal trace elements in soil were also considered. Moreover, the accumulation of Zn, Ni, Cu, Pb and Cd was assessed based on bioconcentration factor, translocation factor and phytoextraction potential. The results showed high concentration values in the soil of the abandoned and the operation site of the landfill compare to the control site. The highest concentrations of trace metal elements in the plant shoot were observed with A. spinosus for Ni, A. viridis for Pb and A. sessilis for Zn. Furthermore, the highest values of bioconcentration factor (BCF) and the translocation factor (TF) for Ni, were respectively 56 and 2.6, in A. spinosus, suggesting that it can be considered as a Ni hyperaccumulator. Among all metal trace elements, Pb and Zn were respectively highly bioaccumulated in A. viridis and A. sessilis.


Copyright © 2015
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Phytoextraction potential of three endogenous Amaranthaceae species grown on the Akouédo landfill (Abidjan, Côte d’Ivoire)

Abe T, Fukami M, Ogasawara M. 2008. Cadmium accumulation in the shoots and roots of 93 weed species. Soil Science and Plant Nutrition 54(4), 566-573.

Adjiri OA, Goné DL, Kouamé KI, Kamagaté B, Biemi J. 2008. Caractérisation de la pollution chimique et microbiologique de l’environnement de la décharge d’Akouédo, Abidjan-Côte d’Ivoire. International Journal of Biological and Chemical Sciences 2, 401-410.

AFNOR. 1999. Norme NF X 31-120. In: AFNOR, Ed. Recueil de normes, qualité des sols. AFNOR, Paris.

Akessé DPV, Koné M, Traoré KS, Dembélé A, Houenou P. 2013. Mobilisation par lixiviation en laboratoire de quelques ETM (Fe, Zn, Cu, Pb et Cd) des sols de la décharge d’Akouédo (Côte d’Ivoire): Influence de la teneur en matière organique. European Journal of Scientific Research 100, 607-619.

Angle JS, Linacre NA. 2005. Metal phytoextraction – A survey of potential risks. International Journal of Phytoremediation 7, 241-254.

Baker AJM. 1981. Accumulators and excluders – strategies in the response of plants to heavy metals. Journal of Plant Nutrition 3, 643-654.

Baker AJM, McGrath SP, Reeves RD, Smith JAC. 2000. Metal hyperaccumulator plants : a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils, In: Terry N, Bañuelos G, Ed. Phytoremediation of contaminated soil and water. Lewis Publisher, Boca Raton, Florida, United states.

Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin Y. 1997. Enhanced accumulation of Pb in Indian mustard by soil- applied chelating agents. Environmental Science and Technology 31, 860-865.

Brooks RR, Chambers MF, Nicks LJ, Robinson BH. 1998. Phytomining. Trends in Plant Science 3, 359-362.

Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM. 1997. Phytoremediation of soil metals. Current Opinion in Biotechnology 8, 279-284.

Clemens S, Palmgren MG, Kramer U. 2002. A long way ahead: understanding and engineering plant metal accumulation. Trends in Plant Science 7, 309-315.

Entry JA, Watrud LS, Manasse RS, Vance NC. 1997. Phytoremediation and reclamation of soils contaminated with radionuclides. In: Kruger EL, Anderson TA, Coats JR, Ed. Phytoreme- diation of Soil and Water Contaminants, ACS Symposium Series No. 664. American Chemical Society, Washington, DC.

Ghosh M, Singh SP. 2005a. A review on phytoremediation of heavy metals and utilization of its byproducts. Applied Ecology and Environmental Research 3, 1-18.

Ghosh M, Singh SP. 2005b. A comparative study of cadmium phytoextraction by accumulator and weed species. Environmental Pollution 133, 365-371.

Kos B, Grčman H, Leštan D. 2003. Phytoextraction of lead, zinc and cadmium from soil by selected plants. Plant Soil and Environment 49, 548-553.

Kouamé KI, Goné DL, Savané I, Kouassi EA, Koffi K, Goula BTA, Diallo M. 2006. Mobilité relative des métaux lourds issus de la décharge d’Akouédo et risque de contamination e la nappe du Continental Terminal (Abidjan-Côte d’Ivoire). Afrique Science 2, 39-56.

Kozlov MV, Haukioja E, Bakhtiarov AV, Stroganov DN, Zimina SN. 2000. Root versus canopy uptake of heavy metals by birch in an industrially polluted area: contrasting behaviour of nickel and copper. Environmental Pollution 107, 413-420.

Kuzovkina YA, Knee M, Quigley MF. 2004. Cadmium and Copper Uptake and Translocation in Five Willow (Salix L.) species. International Journal of Phytoremediation 6(3), 269-287.

Lasat MM. 2000. Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. Journal of Hazardous Substance Research 2(5), 1-25.

Mattina MJI, Lannucci-Berger W, Musante C, White JC. 2003. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environmental Pollution 124, 375-378.

Masarovicˇova´ E, Kra´lova´ K. 2012. Plant-Heavy metal interaction: phytoremediation, biofortification and nanoparticles. In: Montanaro G, Dichio B, Ed. Advances in selected plant physiology aspects. In Tech, Rijeka.

Marchiol L, Assolari S, Sacco P, Zerbi G. 2004. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environmental Pollution 132, 21-27.

Maldonado-Magaña A, Favela-Torres E, Rivera-Cabrera F, Volke-Sepulveda TL. 2011. Lead bioaccumulation in Acacia farnesiana and its effect on lipid peroxidation and glutathione production. Plant and Soil 339, 377-389.

McCutcheon SC, Schnoor JL. 2003. Phytoremediation: Transformation and control of contaminants. John Wiley, New York.

Mejare M, Bulow L. 2001. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends in Biotechnology 19, 67-73.

Mench MJ, Didier VL, Loffler M, Gomez A, Masson P. 1994. A mimicked in-situ remediation study of metal-contaminated soils with emphasis on cadmium and lead. Journal of Environmental Quality 23, 785-792.

Messou A, Coulibaly L, Doumbia L, Gourene G. 2013. Plants diversity and phytoaccumulators identification on the Akouédo landfill (Abidjan, Côte d’Ivoire). African Journal of Biotechnology 12(3), 253-264.

Moodley KG, Baijnath H, Southway-Ajulu FA, Maharaj S, Chetty SR. 2007. Determination of Cr, Pb and Ni in water, sludge and plants from settling ponds of sewage treatment works. Water SA 33, 723-728.

Prasad MNV. 2001. Bioremediation potential of Amaranthaceae. In: Proceeding of the 6th International in situ and on site bioremediation symposium, 4-7 juin, 2001, San Diego, California.

Proctor J. 2003. Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspectives in Plant Ecology, Evolution and Systematics 6, 105-124.

Raskin I, Smith RD, Salt DE. 1997. Phytoremediation of metals: using plants to remove pollutants from the environment. Plant Biotechnology 8, 221-226.

Reeves RD. 2003. Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant and Soil 249, 57-65.

Salt DE, Smith RD, Raskin I. 1998. Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology 49, 643-668.

Sebastiani L, Scebba F, Tognetti R. 2004. Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides x maximowiczii) and I-214 (P. x euramericana) exposed to industrial waste. Environmental and Experimental Botany 52, 79-88.

Sterckeman T, Douay F, Proix N, Fourrier H, Perdrix E. 2002. Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the North of France. Water, Air, & Soil Pollution 135, 173-194.

Walter I, Martinez F, Cala V. 2006. Heavy metal speciation and phytotoxic effects of three representative sewage sludges for agricultural uses. Environmental Pollution 139, 507-514.

Waranusantigul P, Kruatrachue M, Pokethitiyook P, Auesukaree C. 2008. Evaluation of Pb phytoremediation potential in Buddleja  asiatica  and  B.  paniculata. Water, Air, & Soil Pollution 193, 79-90.

Wei SH, Niu RC, Srivastava M, Zhou QX, Wu ZJ, Sun TH, Hu YH, Li YM. 2009. Bidens tripartite L.: a Cd-accumulator confirmed by pot culture and site sampling experiment. Journal of Hazardous Materials 170, 1269-1272.

Zhu YG, Shaw G. 2000. Soil contamination with radionuclides and potential remediation. Chemosphere 41, 121-128.


Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background