Welcome to International Network for Natural Sciences | INNSpub

Paper Details

Research Paper | June 1, 2013

| Download 4

Phytoremediation of arsenic from geothermal power plant waste water using Monochoria vaginalis, Salvinia molesta and Colocasia esculenta

Hariyadi, B. Yanuwiadi, B. Polii, Soemarno

Key Words:

Int. J. Biosci.3( 6), 104-111, June 2013

DOI: http://dx.doi.org/10.12692/ijb/3.6.104-111


IJB 2013 [Generate Certificate]


The aim of the research was to identify the ability of Monochoria vaginalis, Salvinia molesta and Colocasia esculenta to decrease Arsenic pollutant from thermal energy waste water through phytoremediation process. An experimental pool was made in field and filled with waste water of geothermal power plant in Lahendong, North Sulawesi. Arsenic content in root and leaf tissue was observed by Atomic Spectrophotometer Atomic Adsorption (ASS). The result of the study showed that there was no significant difference of As absorption among Monochoria vaginalis, Salvinia molesta and Colocasia esculenta. There were two models of As absorption as follows: the As absorption in root followed exponential asymptotic, while absorption by leaf was exponential growth. This research confirmed that Monochoria vaginalis, Salvinia molesta and Colocasia esculenta are the potential species for phytoremediation program.


Copyright © 2013
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Phytoremediation of arsenic from geothermal power plant waste water using Monochoria vaginalis, Salvinia molesta and Colocasia esculenta

Ashraf MA, Maah MJ, Yusoff I. 2013. Evaluation of natural Phytoremediation process occurring at Ex-tin Mining Catchment. Chiang Mai Journal Science 40(2), 198-213.

Baldwin PR, Butcher DJ. 2007. Phytoremediation of Arsenic by two hyperaccumulators in a hydroponic environment. Microchemical Journal 85(2), 297-300. http://dx.doi.org/10.1016/j.microc.2006.07.005

Ballantyne JM, Moore IN. 1988. Arsenic geochemistry in geothermal systems. Geochimica et Cosmochimica Acta 52(2), 475-483. http://dx.doi.org/10.1016/0016-7037(88)90102-0

Bhattacharya P, Welch AH, Stollenwerk KG, McLaughlin MJ, Bundschuh J, Panaullah G. 2007. Arsenic in the environment: biology and chemistry. Science of the Total Environment 379(2), 109-120. http://dx.doi.org/10.1016/j.scitotenv.2007.02.037

Bindu  T,  Sumi  MM,  Ramasamy  EV.  2010. Decontamination of water polluted by heavy metals with Taro (Colocasia esculenta) cultured in a hydroponic NFT system. The Environmentalist 30(1), 35-44. http://dx.doi.org/10.1007/s10669-009-9240-6

Duker AA, Carranza EJM, Hale M. 2005. Arsenic geochemistry and health. Environment International 31(5), 631-641. http://dx.doi.org/10.1016/j.envint.2004.10.020

Essumang DK, Dodoo DK, Obiri S, Yaney JY. 2007. Arsenic, cadmium, and mercury in cocoyam (Xanthosoma sagititolium) and watercocoyam (Colocasia esculenta) in Tarkwa a mining community. Bulletin of environmental contamination and toxicology 79(4), 377-379. http://dx.doi.org/10.1007/s00128-007-9244-1

García-de-Lomas J, Dana ED, Ceballos G. 2012. First report of an invading population of Colocasia esculenta (L.) Schott in the Iberian Peninsula. Bioinvassion Record 1(2), 139-143. http://dx.doi.org/10.3391/bir.2012.1.2.10

Jomjun N, Siripen T, Maliwan S, Jintapat N, Prasak T, Somporn C, Petch P. 2010. Phytoremediation of arsenic in submerged soil by wetland plants. International Journal of Phytoremediation 13(1), 35-46. http://dx.doi.org/10.1080/15226511003671320

Liu J, Dong Y, Xu H, Wang D, Xu J. 2007. Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland. Journal of hazardous materials 147(3), 947-953. http://dx.doi.org/10.1016/j.jhazmat.2007.01.125

Mungkono SJ, Corie IP. 2006. Toksikologi Logam Berat B3 dan Dampaknya terhadap Kesehatan. Jurnal Kesehatan Lingkungan 2(2). (Online)

Peraturan Menteri Lingkungan Hidup Nomor 04 Tahun. 2007 Tentang Baku Mutu Air Limbah Bagi Usaha dan/atau Kegiatan Minyak dan Gas Serta Panas Bumi.

Peraturan Pemerintah Republik Indonesia Nomor 82 Tahun. 2001 Tentang Pengelolaan Kualitas Air dan Pengendalian Pencemaran Air.

PGE Lahendong. 2012a. Pemantauan Lingkungan Hidup Kegiatan PT. Pertamina Geothermal energy Area Lahendong Periode Bulan Januari-Maret 2012.

PGE Lahendong. 2012b. Pemantauan Lingkungan Hidup Kegiatan PT. Pertamina Geothermal energy Area Lahendong Periode Bulan April-Juli 2012.

Rahman MA, Hasegawa H. 2011. Aquatic arsenic: phytoremediation using floating floating macrophytes. Chemosphere 83(5), 633-646. http://dx.doi.org/10.1016/j.chemosphere.2011.02.04 5

Rompas RJ. 1995. Kemampuan Tumbuhan Tumpe (Monocaria vaginalis) Menyerap Logam Berat Hg dan Zn. Thesis. Universitas Gajah Mada Yogyakarta.

Srivastava M, Ma LQ, Santos JAG. 2006. Three new arsenic hyperaccumulating ferns. Science of the total environment 364(1), 24-31. http://dx.doi.org/10.1016/j.scitotenv.2005.11.002

Tambamroong W. 2007. Phytoextraction of arsenic from contaminated soil by Colocasia esculenta (L.) Schott; taro and wild taro. Chulalongkorn University. Graduate School.

Tanaka  T.  1988.  Distribution  of  arsenic  in  the natural  environment  with  emphasis  on  rocks  and soils. Applied Organometallic Chemistry 2(4), 283-295. http://dx.doi.org/10.1002/aoc.590020403

Thornton I, Farago M. 1997. The geochemistry of arsenic. In Arsenic. Springer Netherlands, 1-16. http://dx.doi.org/10.1007/978-94-011-5864-0_1

Tlustos P, Pavlikova D, Balik J, Szakova J, Hanc A, Balikova M. 1998. The accumulation of arsenic acid and cadmium in plants and their distribution. Rostlinna Vyroba-UZPI, 44.

Visoottiviseth P, Francesconi K, Sridokchan W. 2002.  The potential  of  Thai  indigenous plant species for the phytoremediation of arsenic contaminated land. Environmental Pollution 118(3), 453-461. http://dx.doi.org/10.1016/S0269-7491(01)00293-7

Webster JB, Nordstrom DK. 2003. Geothermal Arsenic, In: Welch AH, Stollenwerk KG, eds. Arsenic in Ground Water. Kluwer Academic Pub., 101-125.