Phytoremediation potential of selected grass species in the Mine Tailing Pond of Sitio Manlauyan, Gango, Libona, Bukidnon, Philippines

Paper Details

Research Paper 01/11/2017
Views (1020)
current_issue_feature_image
publication_file

Phytoremediation potential of selected grass species in the Mine Tailing Pond of Sitio Manlauyan, Gango, Libona, Bukidnon, Philippines

Ina Marie G. Abad, Romulo O. Capundag Jr., Jedalyn C. Gamalo, Cordulo P. Ascano II, Gina C. Lacang
J. Biodiv. & Environ. Sci. 11(5), 321-328, November 2017.
Copyright Statement: Copyright 2017; The Author(s).
License: CC BY-NC 4.0

Abstract

Generally, the study aims to investigate the absorptive capacity of the three dominant grass species namely Imperata cylindrica L. (Cogon grass), Megathyrsus maximus J. (Guinea grass), and Pennisetum purpureum S. (Napier grass) in remediating mercury contamination from a mining tailing pond of barangay Gango, Libona Bukidnon, Philippines. It also assessed the level of mercury contamination in the soil within the study area. The study made used of a descriptive comparative method and One-way Analysis of Variance for the statistical tool. Composite samplings were made for the soil samples and the presence of mercury in both the grass and soil samples were analyzed using a Cold Vapor Atomic Absorption Spectroscopy (CVAAS). Based on the findings of the study, the three grass species showed absorptive capacity and were able to remediate mercury from the soil. The highest mercury uptake was cogon grass with an average concentration of 10.473 ppm followed by guinea grass with an average of 7.521 ppm then napier grass with an average of 3.012 ppm. It also showed that the soil sample without vegetation has greater concentration of mercury than the soil sample with vegetation.

Chunilall V, Kindness A, Jonnalagadda SB. 2004. Heavy metal uptake by spinach leaves grown on contaminated soils with lead, mercury, cadmium, and nickel. Journal of Environmental Science and Health, Part B 39(3), 473-481.

Cook BG, Pengelly BC, Brown SD, Donnelly JL, Eagles DA, Franco MA, Hanson J, Mullen BF, Partridge IJ, Peters M, Schultze-Kraft R. 2005. Tropical forages. CSIRO, DPI & F (Qld), CIAT and ILRI, Brisbane Australia.

DAFF. 2014. Elephant grass (Pennisetum purpureum). Dept. Agric. Fish. Forest., PP67 Factsheet, Queensland Gov Australia.

Heaton AC, Rugh CL, Wang NJ, Meagher RB. 1998. Phytoremediation of mercury-and methylmercury-polluted soils using genetically engineered plants. Journal of Soil Contamination  7(4), 497-509.

Henry JR. 2000. An overview of the phytoremediation of lead and mercury (pp. p3-9). Washington, DC: US Environmental Protection Agency, Office of Solid Waste and Emergency Response, Technology Innovation Office.

Ma C, Ming H, Lin C, Naidu R, Bolan N. 2016. Phytoextraction of heavy metal from tailing waste using Napier grass. Catena 136, 74-83.

Marrugo-Negrete J, Durango-Hernández J, Pinedo-Hernández J, Olivero-Verbel J, Díez S. 2015. Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere 127, 58-63.

Paz-Alberto AM, et. al. 2007. Phytoextraction of Lead-Contaminated Soil Using Vetiver grass (Vetiveria zizanioides L.), Cogon grass (Imperata cylindrica L.) and Carabao grass (Paspalum conjugatum L.),” Environmental Science and Pol- lution Research, Vol. 14, No. 7, pp. 498-504. doi:10.1065/espr2007.05.415

Raskin I, Ensley BD. 2000. Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. John Wiley & Sons, Inc., New York.

Table 1. The table below shows the total absorption of mercury uptake in roots using a Cold Vapor AAS as shown in.

Vidali M. 2001. Bioremediation. An overview. Pure and Applied Chemistry 73(7), 1163-1172.

Related Articles

Heterosis breeding, general and specific combining ability and stability studies in pearl millet: Current trends

Ram Avtar, Krishan Pal, Kavita Rani, Rohit Kumar Tiwari, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 117-124, August 2025.

Combining ability, heterosis and stability for yield and fibre quality traits in cotton: Breeding approaches and future prospects

Rohit Kumar Tiwari, Krishan Pal, R. P. Saharan, Ram Avtar, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 109-116, August 2025.

Bridging the COPD awareness gap in marginalized populations: Findings from a multicentre study in Khalilabad, Sant Kabir Nagar, Uttar Pradesh, India

Anupam Pati Tripathi, Jigyasa Pandey, Sakshi Singh, Smita Pathak, Dinesh Chaudhary, Alfiya Mashii, Farheen Fatima, J. Biodiv. & Environ. Sci. 27(2), 97-108, August 2025.

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.