Potential of Clitoria ternatea L. flower extract as a safe and effective alternative to methylene blue stain

Paper Details

Research Paper 13/06/2023
Views (2687)
current_issue_feature_image
publication_file

Potential of Clitoria ternatea L. flower extract as a safe and effective alternative to methylene blue stain

Ma Chrischelle F. Bullecer
Int. J. Biosci. 22(6), 165-170, June 2023.
Copyright Statement: Copyright 2023; The Author(s).
License: CC BY-NC 4.0

Abstract

The efficacy of Clitoria ternatea L. flower (Pukingan) aqueous extract for use in staining cheek cells was studied to obtain non-toxic, environmentally friendly and low-cost dyes for use in staining. C. ternatea L. has a sparsely pubescent stem that sub-erect and woody at the base and may be up to 5 m long. The flower extract of C. ternatea L. have anthocyanins which are categorized as ternatins. A number of histological techniques have been identified to be used to provide a nuclear stain consist of natural phenolic compounds, structurally related to anthocyanins. The objective of this study is to determine the efficacy of aqueous extract of Pukingan on cheek cells considering several parameters. Dye extracts from C. ternatea L. were used to stain cheek cells using the existing standard staining procedures with little modification. One Way Analysis of Variance was used to analyze differences among the mean scores. A significant difference was determined using a post hoc analysis which is Tukey’s test using SPSS and the level of significance was set at 0.05. From the results of the descriptive, parameters for all sample populations have almost similar interpretations. The nucleus was stained satisfactorily, and the sharpness and contrast were excellent. The cytoplasm of the cheek cells was stained intensely, and the stained areas are homogeneous. The prepared extracts had affinity for the cell membrane and nucleus. Therefore, this study shows that dye extracts from C. ternatea L. could be used for cheek cell staining as alternative to Methylene blue stain.

Chew Weng C, Abdullah R, Saad S. 2014. Alternative staining using extracts of hibiscus (Hibiscus rosa-sinensis L.) and red beet (Beta vulgaris L.) in diagnosing ova of intestinal nematodes (Trichuris trichiura and Ascaris lumbricoides) 1, 14-18

Cook BG, Pengelly BC, Brown SD, Donnelly JI, Eagles DA, Franco MA, Hanson J, Mullen BF, Partridge IJ, Peters M, Schultze-Kraft R. 2005. Tropical forages: an interactive tool [CD-ROM]. CSIRO, DPI & F (Qld), CIAT and ILRI, Brisbane, Australia

Eom S, Shin D, Yoon K, Indan J. 2001. Fibre Text 26(4), 425-421.

Mistry TV, Cai Y, Lilley TH, Haslam E. 1991. Polyphenol interactions. Part 5 Anthocyanin co-pigmentation. J Chem Soc, Perkin Trans 2(8), 1287-1296.

Nguyen D. 2017. What Is the Advantage of Using Stains to Look at Cells? Sciencing.com. Copyright 2017 Leaf Group Ltd. All Rights Reserved. Leaf Group Education

Onslow MW. 2013. The Anthocyanin Pigment of Plants. Google Books. Page 32. Retrieved from: www.books.google.com.ph/books

Staples IP. 1992. Clitoria ternatea L. In. T Mannetje L and Jones RM. Plant Resources of South-East Asia. 4. Forages Pudoc Scientific Publishers, Wagening. The Netherlands pp. 94-96

Vidana Gamage GC, Lim YY, Choo WS. 2021. Anthocyanins From Clitoria ternatea Flower: Biosynthesis, Extraction, Stability, Antioxidant Activity, and Applications. Front. Plant Sci. 12, 792303. DOI: 10.3389/fpls.2021.792303

Webb MR, Min K, Ebeler SE. 2008. Anthocyanin Interactions with DNA: Intercalation, Topoisomerase I Inhibition and Oxidative Reactions. J Food Biochem 23, 32(5), 576-596. DOI: 10.1111/j.1745-4514.2008.00181.x. PMID: 19924259; PMCID: PMC2778027.

Related Articles

Rice productivity and soil hydrodynamic properties under lowland Elaeis guineensis and Borassus aethiopum: An asset rice agroforestry system

Sissou Zakari, Pierre Tovihoudji, Janvier Egah, Sékaro Amamath Boukari, Raymon Bio Gonga, Mouiz W. I. A. Yessoufou, Imorou F. Ouorou Barrè, Int. J. Biosci. 27(4), 177-190, October 2025.

Population dynamic parameters for Pseudupeneus prayensis (Mullidae) (Cuvier, 1829) in Ivorian continental shelf

Christian Bernard Tia, Abdoulaye Kone, Diomande Loua, Soumaïla Sylla, Essetchi Paul Kouamelan, Int. J. Biosci. 27(4), 169-176, October 2025.

Evaluation of phytochemicals and in vitro biological activities of Semecarpus kurzii leaf extract

Deepika, V. Ambikapathy, S. Babu, A. Panneerselvam, Int. J. Biosci. 27(4), 159-168, October 2025.

Comparative analysis of the influence of temporal, seasonal and behavioral factors using XGBoost for predicting traveled distances

Y. F. Lankoande, A. K. Gandema, S. Ouedraogo-Kone, A. Kone, Y. Sawadogo, J. Moses, Int. J. Biosci. 27(4), 150-158, October 2025.

The protective effect of black pepper (Piper nigrum) on liver enzymes in streptozotocin-induced diabetic rats

Amani A. R. Filimban, Khulud A. Wathi, Int. J. Biosci. 27(4), 140-149, October 2025.

Production of bioplastics (PHB) using waste paper as feed stock by Cupriavidus taiwanensis

Ajeena Davis, Jini Joseph, Int. J. Biosci. 27(4), 130-139, October 2025.

Gill ectoparasites of the mugilidae from the Ebrié lagoon, Abidjan (Côte d’Ivoire)

Eby Yoboué Gnamma Honorine Alla, Carel Wilfried Bermian Dibi-Ahui, Fidèle Kouassi Kouakou, Abouo Béatrice Adepo-Gourene, Int. J. Biosci. 27(4), 123-129, October 2025.

Impacts of diverse water management systems on growth and yield of two prominent boro rice cultivars in Bangladesh

Zahidul Islam, Md Ekhlasur Rahman, Md Khayrul Islam Bashar, Sharmin Sultana, Md Taharat Al Tauhid, Md Rabiul Islam, Md Shahed Hossain, Md Musa Mondal, Pradip Kumar Biswas, Int. J. Biosci. 27(4), 110-122, October 2025.