Preliminary study of the trace elements, physico-chemical properties and utilization of the salty water spring from Sungkilaw Falls in the Philippines

Paper Details

Research Paper 19/04/2023
Views (1174)
current_issue_feature_image
publication_file

Preliminary study of the trace elements, physico-chemical properties and utilization of the salty water spring from Sungkilaw Falls in the Philippines

Cinder Dianne L. Tabiolo
J. Biodiv. & Environ. Sci. 22(4), 125-135, April 2023.
Copyright Statement: Copyright 2023; The Author(s).
License: CC BY-NC 4.0

Abstract

This study aimed to investigate the physico-chemical and bacteriological properties of the salty water spring at Sungkilaw falls, Brgy. Diwan, Dipolog City, Philippines after a long, rainless and warm period to determine its groundwater chemistry. A single sampling technique was employed to collect water samples, which were analyzed for various parameters such as pH, turbidity, temperature, electrical conductivity, hydrogen sulfide, bicarbonates, sulphates, chlorides, salinity, nitrates, nitrites, fluoride, and phosphates. Trace elements were determined using AAS/ICP-OES method, while coliforms were detected using Multiple Tube Fermentation Technique. Results revealed that the analyzed spring water was slightly acidic with an average temperature and electrical conductivity. It met the maximum permissible limit set by PNSDW for nitrates, nitrites, sulfate, and alkalinity (CaCO3). The water was found to be rich in Fe, Na, Zn, F-, SO4, Pb, Hg, H2S, Ba, and CaCO3. However, the presence of coliforms suggests that the water needs to be treated. Further studies are needed to confirm the possibility of utilizing salty spring water for bath spa projects, considering its enhanced concentration of hydrogen gas. Overall, this study provides valuable information on the quality of the salty water spring in Dipolog City, Philippines which can serve as a basis for future research and water resource management and possible tourism initiatives.

Adeleye AS, Conway JR, Garner KL. 2020. The impact of trace elements in water on human health: A review. Science of the Total Environment 713, 136586. DOI: 10.1016/j.scitotenv.2020.136586 Argonne National Laboratory and The University of Texas at Dallas , (N.D.). Why is the Ocean Salty

Asai K. 1981. Miracle Cure. Organic Germanium. Kodansha, New York, 240 pp. Asian Development Bank. (2021). Water. Retrieved from https://www. adb.org/themes/water/main

Bejanidze I, Petrov O, Kharebava T, Pohrebennyk V, Davitadze N, Didmanidze N. 2020. Study of the healing properties of natural sources of Georgia and modeling of their purification processes. Applied Sciences 10(18), 6529.

Caedo JM S, Argüelles EG. 2019. Assessment of water quality parameters in a river receiving landfill leachate: A case study in the Philippines. Journal of Environmental Management 238, 420-427. DOI: 10.1016/j.jenvman.2019.02.055

Cañedo-Argüelles M, Kefford B, Schäfer R. 2018. Salt in freshwaters: causes, effects and prospects- introduction to the theme issue. Philos Trans R Soc Lond B. Biol Sci 374(1764), 20180002.

Crompton TR. 2019. Determination of Toxic Organic Chemicals in Natural Waters, Sediments and Soils: Determination and Analysis. Academic Press.

Dobrzynski D, Rossi D. 2017. Geochemistry of trace elements in spring waters of the Lourdes area (France). Annales Societatis Geologorum Poloniae vol. 87, 199-212.

Henningsen J, Pehling M. 2018. Water, mineral water and health. International Journal of Hygiene and Environmental Health 221(5), 771-777.

Pavlova AV, Krylova OV, Vasnetsova OA. 2018. Classification of mineral waters. фармация 67, 8-13.

Petraccia L, Liberati G, Masciullo SG, Grassi M, Fraioli A. 2006. Water, mineral waters and health. Clinical nutrition 25(3), 377-385.

Ray C. 2020. Sacred Waters: A Cross-cultural Compendium of Hallowed Springs and Holy Wells. Routledge p. 1-20.

Richardson BJ. 2003. Taste and odor of water. In Water Quality Engineering: Physical/Chemical Treatment Processes (pp. 1-28). Wiley.

Richardson SD, Plewa MJ, Wagner ED, Schoeny R, DeMarini DM. 2007. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutation Research/Reviews in Mutation Research 636(1-3), 178-242.

Richardson SD. 2003. Disinfection by-products and other emerging contaminants in drinking water. TrAC Trends in Analytical Chemistry 22(10), 666-684.

Richardson SD. 2003. Water taste and odor: An overview. In Water Treatment Plant Residuals: Field Guide (pp. 1-7). American Water Works Association.

Singh RP, Kumar S, Sharma S, Kumar S. 2020. Water quality assessment using water quality index and multivariate statistical techniques in the upper Ganga-Yamuna Doab region, India. Environmental Monitoring and Assessment 192(4), 1-22.

Tabiolo CD, Daymiel G. 2017. The Physico-chemical and Biological Characteristics of Dipolog Bay. International Journal of Current Research Vol. 9, Issue, 07, pp.54527-54530.

Tabiolo CD, Luza M. 2020. Water quality and physical assessment of Sungkilaw waterfalls in Zamboanga del norte, Philippines. Journal of Biodiversity and Environmental Sciences (JBES), Vol. 17, No. 1, p. 10-17, 2020.

Tengco JM, Abad JD, Vargas EL, Espaldon ML. 2018. Physico-chemical characteristics of groundwater in two saline water springs in Laguna, Philippines. International Journal of Geomate 14(45), 99-105.

Yang H, Hu J, Chen X, Zhang Y. 2021. Trace elements in drinking water and their health effects. Journal of Trace Elements in Medicine and Biology 67, 126798. DOI: 10.1016/j.jtemb.2021.126798

Related Articles

Agroforestry in woody-encroached Sub-Saharan savannas: Transforming ecological challenges into sustainable opportunities

Yao Anicet Gervais Kouamé, Pabo Quévin Oula, Kouamé Fulgence Koffi, Ollo Sib, Adama Bakayoko, Karidia Traoré, J. Biodiv. & Environ. Sci. 27(3), 10-22, September 2025.

Extreme rainfall variability and trends in the district of Ouedeme, municipality of Glazoue (Benin)

Koumassi Dègla Hervé, J. Biodiv. & Environ. Sci. 27(3), 1-9, September 2025.

Heterosis breeding, general and specific combining ability and stability studies in pearl millet: Current trends

Ram Avtar, Krishan Pal, Kavita Rani, Rohit Kumar Tiwari, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 117-124, August 2025.

Combining ability, heterosis and stability for yield and fibre quality traits in cotton: Breeding approaches and future prospects

Rohit Kumar Tiwari, Krishan Pal, R. P. Saharan, Ram Avtar, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 109-116, August 2025.

Bridging the COPD awareness gap in marginalized populations: Findings from a multicentre study in Khalilabad, Sant Kabir Nagar, Uttar Pradesh, India

Anupam Pati Tripathi, Jigyasa Pandey, Sakshi Singh, Smita Pathak, Dinesh Chaudhary, Alfiya Mashii, Farheen Fatima, J. Biodiv. & Environ. Sci. 27(2), 97-108, August 2025.

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.