Principle of mechanical properties of Oak (Quercus castaneifolia C.A. Mey) at different regions of northern part of Iran

Paper Details

Research Paper 01/12/2015
Views (554)
current_issue_feature_image
publication_file

Principle of mechanical properties of Oak (Quercus castaneifolia C.A. Mey) at different regions of northern part of Iran

Fardad Golbabaei
J. Biodiv. & Environ. Sci. 7(6), 72-79, December 2015.
Copyright Statement: Copyright 2015; The Author(s).
License: CC BY-NC 4.0

Abstract

In this study, mechanical properties of Oak (Quercus castaneifolia) at four different locations of Caspian forests (North of Iran) were investigated. The locations were including Asalem (37°56´55. N, 48°52´84. E), Visar (36°28´3.N, 51°32´5. E), Sangdeh (36°05´28. N, 52°25´41. E) and Golestan (36°25´41. N, 51°35´25. E). The test materials were derived from randomly chosen trees. Mechanical properties such as static bending strength, compression strength parallel to grain, impact strength and shear strength are measured on two moisture levels: green and air-dried (12% moisture content). The results obtained for the species at different geographical locations, ages, and mechanical properties. According to our findings in this research, there are positive relationships between wood density and static bending (modulus of rupture and modulus of elasticity) and the relation between wood density and other mechanical properties was not significant. Total of oak wood can be utilized in more structural application due to good density and high mechanical properties.

ASTM D143. 2001. Standard Test Methods for Small Clear Specimens of Timber.

ASTM D2395. 2001. Standard Test Methods for Specific Gravity of Wood and Wood Based Materials.

ASTM E23. 1994. Standard Test Methods for Not-ched Bar Impact Testing of Metallic Materials.

Aydin S, YücelYardimci M, Ramyar K. 2007. Mechanical properties of four timber species commonly used in Turkey. Turkish J. Eng. Sci. 31, 19-17

Bielczyk S. 1953. Investigation of physical and mechanical properties of wood Quercusrobur and Carpinusbetulus originating from a forest community resembling a natural community. Prague Inst. Tech. Drewna3 (3), 92-110.

CWAR. 2009. Center for Wood Anatomy Research, United States Department of Agriculture (USDA) Forest Service, Forest Products Laboratory, Madison, Wisconsin, USA.

Gunduz G, Korkut S, Aydemir D, Bekar I. 2009. The Density, Compression Strength and Surface Hardness of Heat Treated. Maderas. Ciencia y tecnologia 11(1), 61-70.

Little EL Jr. 1979. Checklist of United States trees (native and naturalized).Washington, D.C.: Forest Service, U.S. Dept. of Agriculture, No. 541.

Markwardt LJ, Wilson TRC. 1935. Strength and related properties of woods grown in the United States. Washington, D.C.: Forest Service, U.S. Dept. of Agriculture No. 479.

Panshin AJ, De Zeeuw C. 1980. Textbook of wood technology. 4th Ed. McGraw-Hill, New York.

Parsapajouh  D.  1999.  Wood  Technology.  Iran: University of Tehran press, 1-400.

Perelygin LM, Orlova EK. 1953. Driving and withdrawal resistance of nails.Trud.Inst. Les. 9, 8-371.

Record SJ, Hess RW. 1943. Timbers of the new world. New Haven: Yale University Press.

SaghebTalebi K. 2004.  Forests  of  Iran.Research Institute of Forests and Rangelands (RIFR), Tehran, Iran.

Shepard RK, Shottafer JE. 1992. Specific Gravity and Mechanical Property-age Relationship sin Red Pine, Forest Prod. J. 42(7/8), 60-66.

TS 2471. 1976. Wood-determination of moisture content for physical and mechanical tests, Turkish Standard Institution, Turkey.

TS 2474. 1976. Wood-determination of ultimate strength in static bending, Turkish Standard Institution, Turkey.

TS 25+5. 1976. Wood-determination of ultimate strength in compression parallel to grain, Turkish Standard Institution, Turkey.

Zhang SY. 1995. Effect of Growth Rate on Wood Specific Gravity and Selected Mechanical Properties in Individual Species from Distinct Wood. Categories Wood Sci. and Technol. 29(6), 451-465. http://dx.doi.org/10.1007/BF001942.04.

Related Articles

Agroforestry in woody-encroached Sub-Saharan savannas: Transforming ecological challenges into sustainable opportunities

Yao Anicet Gervais Kouamé, Pabo Quévin Oula, Kouamé Fulgence Koffi, Ollo Sib, Adama Bakayoko, Karidia Traoré, J. Biodiv. & Environ. Sci. 27(3), 10-22, September 2025.

Extreme rainfall variability and trends in the district of Ouedeme, municipality of Glazoue (Benin)

Koumassi Dègla Hervé, J. Biodiv. & Environ. Sci. 27(3), 1-9, September 2025.

Heterosis breeding, general and specific combining ability and stability studies in pearl millet: Current trends

Ram Avtar, Krishan Pal, Kavita Rani, Rohit Kumar Tiwari, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 117-124, August 2025.

Combining ability, heterosis and stability for yield and fibre quality traits in cotton: Breeding approaches and future prospects

Rohit Kumar Tiwari, Krishan Pal, R. P. Saharan, Ram Avtar, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 109-116, August 2025.

Bridging the COPD awareness gap in marginalized populations: Findings from a multicentre study in Khalilabad, Sant Kabir Nagar, Uttar Pradesh, India

Anupam Pati Tripathi, Jigyasa Pandey, Sakshi Singh, Smita Pathak, Dinesh Chaudhary, Alfiya Mashii, Farheen Fatima, J. Biodiv. & Environ. Sci. 27(2), 97-108, August 2025.

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.