Production and characterization of cellulose from the branch and leaves of Gigantochloa atter (Kawayang kayali)

Paper Details

Research Paper 01/06/2019
Views (756)
current_issue_feature_image
publication_file

Production and characterization of cellulose from the branch and leaves of Gigantochloa atter (Kawayang kayali)

Franchette S Alcantara, Jayson T Francisco
Int. J. Biosci. 14(6), 330-335, June 2019.
Copyright Statement: Copyright 2019; The Author(s).
License: CC BY-NC 4.0

Abstract

Gigantochloa atter (Kawayang kayali) branch and leaves were extracted and characterized as an alternative source to produce cellulose. Delignification and bleaching process were carried out to produce cellulose. The produced cellulose was then characterized through spectroscopic, morphological and several physical properties. The amount of cellulose present in G. atter branch and leaves were 12.5521 ± 0.2655% and 8.3037 ± 0.4733%, respectively, which both appeared to be in amorphous white powder. Meanwhile, result in t– test indicted that there is a significant difference between the two percent yields of cellulose between G. atter samples. The cellulose produced were both soluble in cuprammonium hydroxide and partially soluble in NaOH, implying the absence of noncellulosic components. FT-IR analysis also confirmed through spectral match that the samples produced are both cellulose. In addition, the absence of C=O stretch and aromatic ring of C=C in the spectra implies the removal of lignin for both G. atter samples. Both samples did not impart a red violet stain upon treatment of phloroglucinol – HCl solution, which also implies that no lignin was left in the samples. The surface structure of the product shows a clear separation of fibers before and after chemical treatments. Overall, the results suggested that both G. atter samples are a potential source of cellulose.

Henniges U, Potthast A. 2009. Bleaching Revisited: Impact of Oxidative and Reductive Bleaching Treatments on Cellulose and Paper. Restaurator-International Journal for The Preservation of Library and Archival Material – RESTAURATOR 30, 294-320 http://dx.doi.org /10.1515/rest.017

Hughes J, Ayoko G, Collett S, Golding G. 2013. Rapid Quantification of Methamphetamine: Using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Chemometrics. PLoS ONE 8(7), 2. https://doi.org /10.1371/journal.pone.0069609

Kaur V, Chattopadhyay DP, Kaur S. 2013. Study on Extraction of Bamboo Fibres from Raw Bamboo Fibres Bundles Using Different Retting Techniques. Text Light Indian Science and Technology 2(4), 174-179.

Kennedy JF, Philips GO, Williams PA. 2009. The Chemistry and Processing of Wood and Plant Fibrous Material. Woodhead Publishing, 2-3

Kontturi E. 2015. Hemicellulose: Structure, Characterization, Dissolution, Modification. Aalto University, 22-35.

Lavanya D, Kulkarni PK, Dixit M, Raavi P, Naga L. 2011. Sources of Cellulose and Their Applications- A Review. International Journal of Drug Formulation and Research 2, 20-21.

Li X. 2004 Physical, Chemical, and Mechanical Properties of Bamboo and Its Utilization Potential for Fiberboard Manufacturing. MS Thesis. Louisiana State College and Agricultural and Mechanical College 1-2.

Mora JI, Alvarez V, Cyras V, Vazquez A. 2008. Extraction of Cellulose and Preparation of Nanocellulose from Sisal. Cellulose 15(1), 149-159. https://doi.org/10.1007/s10570-007-9145-9

Muller G. 2008. FTIR-ATR Spectroscopic and FTIR-FPA Microscopic Investigations on Panel Board Production Processes Using Grand Fir and European Beech. PhD Thesis. Georg-August University of Göttingen. 52.

Runckel W. 1942. A Study of Cuprammonium Hydroxide and Its Application to the Cellulose Viscosity Test of the Pulp and Paper Industry. MS Thesis. Oregon State College.

Supranto S, Tawfiequrrahman A, Yunanto DE. 2015. Sugarcane Bagasse Conversion to High Refined Cellulose Using Nitric Acid, Sodium Hydroxide and Hydrogen Peroxide as the Delignificating Agents. Journal of Engineering Science and Technology 10, 35- 46. http://dx.doi.org/10.13140/2.1.5063.2641

Tao S, Khanizadey S, Zhang H, Zhang S. 2009. Anatomy, Ultrastructure and Lignin Distribution of Stone Cells in Two Pyrus Species. Plant Science 176(3), 413- 419. https://doi.org/10.1016 /j.plantsci.2008.12.011

Related Articles

Muscle type and meat quality of local chickens according to preslaughter transport conditions and sex in Benin

Assouan Gabriel Bonou*, Finagnon Josée Bernice Houéssionon, Kocou Aimé Edenakpo, Serge Gbênagnon Ahounou, Chakirath Folakè Arikè Salifou, Issaka Abdou Karim Youssao, Int. J. Biosci. 27(6), 241-250, December 2025.

Effects of micronutrients and timing of application on the agronomic and yield characteristics of cucumber (Cucumis sativus)

Princess Anne C. Lagcao, Marissa C. Hitalia*, Int. J. Biosci. 27(6), 214-240, December 2025.

Response of different soybean varieties to phosphorus fertilizer microdosing and rhizobium inoculation in the sub-humid zone of Northern Benin

Pierre G. Tovihoudji*, Kamarou-Dine Seydou, Lionel Zadji, Sissou Zakari, Valerien A. Zinsou, Int. J. Biosci. 27(6), 201-213, December 2025.

On-farm validation of black soldier fly larvae meal as a sustainable replacement for shrimp meal in rainbow trout diets in the mid hills of Nepal

Ishori Singh Mahato, Krishna Paudel*, Sunita Chand, Anshuka Bhattarai, Int. J. Biosci. 27(6), 189-200, December 2025.

Insect fauna associated with Cucumis sativus (Cucurbitales: Cucurbitaceae) in Parakou, A cotton-growing area of central Benin

Lionel Zadji*, Mohamed Yaya, Roland Bocco, Prudencia M. Tovignahoua, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, Hugues Baimey, Leonard Afouda, Int. J. Biosci. 27(6), 175-188, December 2025.

First record of two hymenopteran species, Brachymeria excarinata Gahan (Chalcididae) and Pteromalus sp. (Pteromalidae), as hyperparasitoids of Diadegma insulare in Senegal

Babacar Labou*, Etienne Tendeng, Mamadou Diatte, El hadji Sérigne Sylla, Karamoko Diarra, Int. J. Biosci. 27(6), 167-174, December 2025.

Hepatoprotective and antinociceptive effects of terpinolene in streptozotocin-induced diabetic peripheral neuropathic rats

Ravishankar Sarumathi, Muthukumaran Preethi, Chandrasekaran Sankaranarayanan*, Int. J. Biosci. 27(6), 156-166, December 2025.