Proteomic Profile of the Toxic Cyanobacteria Microcystic aeruginosa
Paper Details
Proteomic Profile of the Toxic Cyanobacteria Microcystic aeruginosa
Abstract
The production of cyanotoxins in algal blooms has been a major concern for the quality of freshwaters that aquatic species and humans have in contact with. In particular, microcystin is a common yet potent cyanotoxin that is produced by cyanobacteria. In this paper, the mcyE proteome was studied to analyze and gain further knowledge of its role in microcystin production relative to its structure and function. The mcyE gene of the Microcystic aeruginosa was analyzed using the CyanoOmicsDB database. Based on the findings of data mining, the structure of the microcystin is composed of arginine and leucine. The proteins expressed by this gene cluster are diverse with functions relating to the cell’s organization and assembly of complex polyketides or non-ribosomal polypeptides. However, there is little information as to the association of these proteins to the production of microcystin.
Bláhová L, Babica P, Maršálková E, Smutná M, Maršálek B, Bláha L. 2007. Concentrations and seasonal trends of extracellular microcystins in freshwaters of the Czech Republic – results of the national monitoring program. CLEAN – Soil, Air, and Water 35, 348–354.
Bláhová L, Babica P, Adamovský O, Kohoutek J, Maršálek B, Bláha L. 2008. Analyses of cyanobacterial toxins (microcystins, cylindrospermopsin) in the reservoirs of the Czech Republic and evaluation of health risks. Environmental Chemistry Letters 6, 223–227.
Borges HLF, Branco LHZ, Martins MD, Lima CS, Barbosa PT, Lira GAST, Bittencourt-Oliveira MC, Molica RJR. 2015. Cyanotoxin production and phylogeny of benthic cyanobacterial strains isolated from the northeast of Brazil, Harmful Algae, Volume 43, 46-57. https://doi.org/10.1016/j.hal.2015.01.003
Chorus I. 2001. Cyanotoxins – research for environmental safety and human health. In: Chorus I, editor. Cyanotoxins – Occurrence, Causes, Consequences. Berlin: Springer-Verlag p 1–4.
Codd GA, Morrison LF, Metcalf JS. 2005. Cyanobacterial toxins: risk management for health protection. Toxicol Appl Pharmacol 203(3), 264-72.
Dittmann E, Neilan BA, Erhard M, von Doëhren H, Boërner T. 1997. Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Mol. Microbiol 26, 779-787.
Dittmann E, Fewer DP, Neilan BA. 2013. Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS microbiology reviews, 37(1), 23–43. https://doi.org/10.1111/j.1574-6976.2012.12000.x
Eriksson JE, Gronberg L, Nygard S, Slotte JP, Meriluoto JAO. 1990. Hepatocellular uptake of 3H-dihydromicrocystin-LR, a cyclic peptide toxin. Biochim. Biophys. Acta 1025, 60-66.
Harrow J, Nagy A, Reymond A. 2009. Identifying protein-coding genes in genomic sequences. Genome Biol 10, 201. https://doi.org/10.1186/gb-2009-10-1-201
Honkanen RE, Boynton AL. 1990. Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases. Journal of Biological Chemistry 265, 19401-19404.
Hu Y, Chen J, Fan H, Xie P, He J. 2016. A review of neurotoxicity of microcystins. International Environmental Science and Pollution Research 23, 7211–7219. https://doi.org/10.1007/s11356-016-6073-y
Hwang S, Lee N, Cho S, Palsson B, Cho BK. 2020. Repurposing Modular Polyketide Synthases and Non-ribosomal Peptide Synthetases for Novel Chemical Biosynthesis. Frontiers in molecular biosciences 7, 87. https://doi.org/10.3389/fmolb.2020.00087
Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Resear 28, 27-30.
Karl D, Michaels A, Bergman B, Capone D, Carpenter E, Letelier R, Lipschultz F, Paerl H, Sigman D, Stal L. 2002. Dinitrogen fixation in the world’s oceans. Biogeochemistry 58, 47-98.
Kaushik P, Chauhan P, Chauhan G, Goyal P. 2009. Evaluation of Nostoc commune for potential antibacterial activity and UV-HPLC analysis of methanol extract. The Internet Journal of Microbiology ISSN: 1937- 8289, 1.
Liu H, Zhang X, Zhang S, Huang H, Wu J, Wang Y, Yuan L, Liu C, Zeng X, Cheng X, Zhuang D, Zhang H. 2018. Oxidative Stress Mediates Microcystin-LR-Induced Endoplasmic Reticulum Stress and Autophagy in KK-1 Cells and C57BL/6 Mice Ovaries. Frontiers in physiology 9, 1058. https://doi.org/10.3389/fphys.2018.01058
Mullowney MW, McClure RA, Robey MT, Kelleher NL, Thomson RJ. 2018. Natural products from thioester reductase containing biosynthetic pathways. Natural product reports, 35(9), 847–878. https://doi.org/10.1039/c8np00013a
Neilan BA, Goodman AE. 1997. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. International Journal of Systematic Bacteriology 693-697.
Ngwa FF, Madramootoo CA, Jabaji S. 2014. Comparison of cyanobacterial microcystin synthetase (mcy) E gene transcript levels, mcy E gene copies, and biomass as indicators of microcystin risk under laboratory and field conditions. MicrobiologyOpen, 3(4), 411–425. https://doi.org/10.1002/mbo3.173
Nishizawa T, Asayama M, Fujii K, Harada K, Shirai M. 1999. Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp. Journal of Biochemistry 126, 520-529.
Portmann C, Prestinari C, Myers T, Scharte J, Gademann K. 2009. Directed Biosynthesis of Phytotoxic Alkaloids in the Cyanobacterium Nostoc 78–12A. ChemBioChem 10, 889 – 895.
Rantala A, Fewer DP, Hisbergues M, Rouhiainen L, Vaitomaa J, Börner T, Sivonen K. 2004. Phylogenetic evidence for the early evolution of microcystin synthesis. Proceedings of the National Academy of Sciences of the United States of America 101(2), 568–573. https://doi.org/10.1073/pnas.0304489101
Rinehart KL, Namikoshi M, Choi BW. 1994. Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). Journal of Applied Phycology 6, 159-176.
Ruggiero M, Gordon D. 2014. Consensus Management Hierarchy for the ITIS & Species 2000 Catalogue of Life.
Singh DP, Prabha R, Keshri V, Abhilash PC. 2016. Structure Prediction and Binding Site Analysis of Hepatotoxic Microcystin-LR Degrading MlrC-Like Protein from Burkholderia sp. using Computational Approaches. American Journal of Bioinformatics 5. https://doi.org/10.3844/ajbsp.2016.1.9
Sivonen K. 1996. Cyanobacterial toxins and toxin production. Phycologia 35, S12-24.
Stal LJ. 2007. Cyanobacteria. In: Seckbach, J. (eds) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6112-7_36
Tillett D, Dittmann E, Erhard M, Döhren H, Börner T, Neilan B. 2000. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: An integrated peptide-polyketide synthetase system. Chemistry & biology 7, p 753-64. https://doi.org/10.1016/S1074-5521(00)00021-1
Tooming-Klunderud A, Fewer DP, Rohrlack T. 2008. Evidence for positive selection acting on microcystin synthetase adenylation domains in three cyanobacterial genera. BMC Evolutionary Biology 8, 256. https://doi.org/10.1186/1471-2148-8-256
Valerio E, Vasconcelos V, Campos A. 2016. New insights on the mode of action of microcystins in animal cells – a review. Mini-Reviews in Medicinal Chemistry 16, 1032–1041. https://doi.org/10.2174/1389557516666160219130553
Von Doëhren H, Dieckmann R, Pavela-Vrancic M. 1999. The nonribosomal code. Chemical Biology 6, R273-R279.
Zhou P. 2021. Nucleic Acids Research, gkab 891. https://doi.org/10.1093/nar/gkab891
RJ Krista Raye Y. Leocadio (2022), Proteomic Profile of the Toxic Cyanobacteria Microcystic aeruginosa; IJB, V21, N3, September, P107-116
https://innspub.net/proteomic-profile-of-the-toxic-cyanobacteria-microcystic-aeruginosa/
Copyright © 2022
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0