Rapid assessment on tree diversity of Nickel Mining sites in Carrascal, Surigao del Sur, Philippines

Paper Details

Research Paper 01/04/2017
Views (911)
current_issue_feature_image
publication_file

Rapid assessment on tree diversity of Nickel Mining sites in Carrascal, Surigao del Sur, Philippines

Roger T. Sarmiento, Meljan T. Demetillo
J. Biodiv. & Environ. Sci. 10(4), 201-207, April 2017.
Copyright Statement: Copyright 2017; The Author(s).
License: CC BY-NC 4.0

Abstract

An examination of the tree species diversity of the mined and slightly disturbed nickel mining sites of Carrascal, Surigao del Sur was carried out using quadrat and transects techniques. The general assessment of the site revealed that it falls under a mixed secondary forest type over an ultramafic soil. In spite the fertility limitations of the area substrates being ultramafic, it still have a disproportionately high number of tree species and mostly are endemic and/or rare. A total of 48 taxa belonging to 30 genera and 20 families were recorded. The dominant families were Dipterocarpaceae and Fabaceae having 6 species each, and the dominant genus was Shorea with 4 species. The area has a composite Shannon-Weiner diversity index of 2.2872 which is considered low. As an ultramafic ecosystem, 46 species (96%) of the 48 total identified species are found to be indigenous (native) to the Philippines and of which 24 (50%) are endemic or exclusively found in the country. Conservation status of these taxa according to IUCN Red List of Threatened Species and the Philippine Red List showed that about 15 endangered species was encountered. Noteworthy species include Xanthostemon verdugonianus – the iron wood of the Philippines, and some premium timber producing species under the Dipterocarpaceae family. Though mining sites are considered less productive for timber production, the conservation of this ultramafic environment is highly necessary in order to stabilize ecosystem dynamics, protect biodiversity, and prevent potential impacts of natural calamities such as landslides and flooding on lower areas.

Bonifacio E, Zanini E, Boero V, Franchini-Angela M. 1997. Pedogenesis in a soil catena on serpentine in North-Western Italy. Geoderma 75, 33-51.

Ent van der A. 2011. The ecology of ultramafic areas in Sabah: Threats and conservation needs. Garden’s Bulletin Singapore 63(1 & 2), 385-393.

Fernando ES, Co LL, Lagunzad DA, Gruezo WS, Barcelona JF, Madulid DA, Baja-Lapis A, Texon GI, Manila AC, Zamora PM. 2008.Threatened plants of the Philippines: A preliminary assessment. Asia Life Sciences, Supplement 3, 1-52.

Garnier J, Quantin C, Guimaraes E, Garg VK, Martins ES, Becquer T. 2009. Understanding the genesis of ultramafic soils and catena dynamics in Niquelandia, Brazil. Geoderma 151, 204-214.

Lantican CB. 2015. Philippine Native Trees – What to Plant in Different Provinces. Unpublished Terminal Report to DOST-PCARRD.

Serapio M. Jr. 2016. New Philippine minister says open-pit mining is “madness”. Retrieved from www.reuters.com/article/philippines-mining-idUSL4N19E1RF.

The IUCN. 2016. The IUCN Red List of Threatened Species 2016-3, Downloaded on 05 March 2017.

Tilman D, Lehman C. 2001. Human-caused environmental change: Impacts on plant diversity and evolution. Paper presented to the National Academy of Sciences colloquium, “The future of Evolution”, Arnold and Mabel Beckham Center in Irvine, CA. Retrieved from: www.pnas.org/content/98/10/5433.full

Transparency Market Research. 2017. Nickel Mining Market – Global Industry Analysis, Market Size, Share, Growth Trends and Forecast 2015-2023. www.transparencymarketresearch.com/nickel-mining-market.html

Whittaker RH, Walker RB, Kruckerberg AR. 1954. The ecology of serpentine soils: A symposium. Ecology 35, 258-288.

Related Articles

Evaluating curriculum alignment, accuracy, and readability of ‘environmental disaster, sanitation, and waste management

Analyn I. Diola*, Priscilla R. Castro, J. Biodiv. & Environ. Sci. 28(2), 1-11, February 2026.

Above and below ground carbon stock assessment of natural and planted mangrove forest in Davao Occidental, Philippines

C. F. Mangaga*, W. T. Tatil, H. A. R. Quiaoit, P. D. Suson, J. Biodiv. & Environ. Sci. 28(1), 157-167, January 2026.

Extraction and characterization of distilled water from by-product of salt refinery processing

Analyn I. Diola*, Eric A. Cunanan, Irene A. De Vera, Christian Garret F. Aquino, Julie M. Agpaoa, J. Biodiv. & Environ. Sci. 28(1), 151-156, January 2026.

Vulnerability to illegal, unreported and unregulated (IUU) fishing: The case of the Talusan, Zamboanga Sibugay, Philippines

Angelica M. Darunday*, Judy Ann H. Fernandez, Shekinah L. Ogoc, Norlika D. Moti, Larry C. Herbito, Armi G. Torres, J. Biodiv. & Environ. Sci. 28(1), 138-150, January 2026.

Socio-ecological dimensions of intertidal gleaning: The use of local ecological knowledge to identify commercially important gastropods in Iligan Bay, Philippines

Katrina Flores, Armi G. Torres, Wella T. Tatil, Ivane R. Pedrosa-Gerasmio*, J. Biodiv. & Environ. Sci. 28(1), 126-137, January 2026.

Conservation assessment of the marine ornamental fish species Pomacanthus imperator (Emperor angelfish) in the Philippines

Timothy Jan L. Adel*, Armi G. Torres, J. Biodiv. & Environ. Sci. 28(1), 114-125, January 2026.

Land use conflicts: An impediment to improved agrifood value chain management as perceived by crop farmers in southeast Nigeria

J. U. Chikaire, C. C. Ejiogu, H. I. Duruanyim, T. O. Ogbuji, S. I. Ogbaa, A. O. Kalu, J. I. Ukpabi, A. Rufai, L. C. Izunobi, J. U. Okwudili, C. I. Anah, E. U. Omeire, I. O. Okeoma, J. Nnametu, U. G. Chris-Ejiogu, I. E. Edom, C. N. Atoma, U. S. Awhareno, E. C. Mube-Williams, S. O. Adejoh, A. D. Ude, J. O. Oparaojiaku, C. O. Osuagwu, E. E. Ihem, B. N. Aririguzo, E. C. C. Amaechi, M. N. Osuji, C. A. Acholonu, J. Biodiv. & Environ. Sci. 28(1), 102-113, January 2026.