Welcome to International Network for Natural Sciences I INNSpub

Paper Details

Research Paper | January 1, 2014

| Download

Relationship between ATPase activity and phosphoenolyruvate carboxylase (PEPC) capacity of durum wheat (Triticum durum) roots in conditions of salt stress

Abdelhak Driouich, Abdelaziz Maqboul, Rabia Aoujdad, Mohammed Rhiat, Hicham Labiout, Mohammed Ouhssine

Key Words:

Int. J. Agron. Agri. Res.4(1), 1-7, January 2014


IJAAR 2014 [Generate Certificate]


The effect of NaCl on the membrane ATPase activity was studied at the root level in durum wheat (Triticum durum Desf. Var Karim). The salt treatment causes a stimulation of the ATPase activity and an acidification of the culture media. The high correlation between the PEPC capacity and ATPase activity shows that these two parameters are related. This statement was confirmed by the use of a specific proton pump inhibitors (ortho vanadate phosphor of Na+). The application of this proton inhibitors on plants limits the increase in the PEPC capacity which would be caused by an increase of cytoplasmic pH due to the membrane ATPase activity.


Copyright © 2014
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Relationship between ATPase activity and phosphoenolyruvate carboxylase (PEPC) capacity of durum wheat (Triticum durum) roots in conditions of salt stress

Chen PS, Toribara TY, Warner H. 1956. Annals Biochemistry 28, 1756–1758.

Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R. 2005. Control of sodium transport in durum wheat. Plant Physiology 137(3), 807–818.

Driouich A, Ouhssine M, Ouassou A, Bengheddour R. 2001. Effet du NaCl sur l’activité du phosphoénol pyruvate carboxylase (PEPC) foliaire et son rôle sur la synthèse du malate et de la proline chez le blé dur (Triticum durum Desf.). Science Letters 3 (3), 1–8.

Driouich A. 2006. Étude des mécanismes physiologiques et biochimiques de tolérance du blé dur (Triticum durum Desf.) au stress salin. PhD thesis, Université Ibn Tofaïl Kénitra, p. 165p.

Fukada TS, Inagaki Y, Yamaguchi T, Saito N, Lida S. 2000. Coleur-enhancing protein in blue petals. Nature 407, 581–586.

Grumet R, Hanson AD. 1986. Glycine betaine accumulation in barly. Austalian Journal of Plant Physiology 13, 353–364.

Guern J, Mathieu J, Kurkdjiam A. 1983. Phosphoenol pyruvate carboxlase activity and the regulation of intracellular pH in plant cells. Physiol. Vég. 21, 855–866.

Hamrouni L, Hanana M, Khouya ML. 2010. Evaluation de la tolérance à la salinité du myrte (Myrtus communis) aux stades germinatif et plantule. Botany 88, 893–900.

Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants without soil. – Circ., Calif. Agric. Exp. Stn. (Berkeley) 347(2), 32 pp.

Hohorst HJ. 1970. L-malate estimation with malate deshydrogénase and NAD. In Methods in enzymatic analysis 2, Bergmeyer H.V., Ed. Verlag. Chemie. Weinhein. 1544 – 1548.

Hu CAA, Scnyder H, Scmidhalter U. 2000. Carbohydrate deposition and partitioning in elongating leaves of wheat under saline soil conditions. Austalian Journal of Plant Physiology 27, 363–370.

Kartz A, Pick U, Avron M. 1992. Modulation of Na+ / H+ antiporter activity by extreme pH and salt in the halotolerant alga Dunaliella salina. Plants Physiology 100, 1224 – 1229.

Latzko E, Kelly GJ. 1983. The many faceted function of PEPC in C3 plants. Physiol. Vég., 21, 817 – 825.

McCue KF, Hanson AD. 1990. Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression. Trends Biotechnology 18(1), 1–11.

Niu X, Narasimha ML, Salzmam RA, Bresson RA, Hasegawa PM. 1993. NaCl regulation of plasma membrane H+ – ATPase gene expression in glycophyte and Halophyte. Plants Physiology 103, 713– 718.

Osmond CB, Popp M. 1983. The balance of malate synthesis and metabolism in response to ion uptake in excised wheat roots. Plants Sciences Letters 32, 115–123.

Queiroz O, Morel C. 1974. Photoperiodism and enzyme activity: towards a model for the control f circadian metabolic rhythms in CAM. Plant Physiology 53, 596–602.

Rhodes D, Rich PJ, Brunk DG, Ju GC, Rhodes JC, Pauly MH, Hansen LA. 1989. Development of two isogenic sweet corn hybrids differing for glycine betaine content. Plants Physiology 91, 1112-1121.

Romani G, Marré MT, Marré E. 1983. Effects of permanent weak acids on dark CO2 fixation and malate level in maize root segments. Physiol. Vég. 21(5), 867–873.

Silberbush M, Ben-Asher J. 2001. Simulation study of nutrient uptake by plants from soilless culture as affected by salinity buildup and transpiration. Plant Soil 233(1), 59–69.

Sairam RK, Tyagi A. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci. 86(3), 407–421.

Tozlu I, Moore GA, Guy CL. 2000. Effect of increasing NaCl concentration on stem elongation, dry mass production and macro and micro-nutrient accumulation in Poncirus trifoliata. Australian Journal of Plant Physiology 27, 35–42.

Tracey AC, Yu T, Stewart AB, Rémi C, Shabala S. 2009. Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. Functional Plant Biology 36, 1110–1119.

Whittington J, Smith F.A. 1992. Salinity induced malate accumulation in Chara. Journal of Experimental Botany 43, 837 – 842.

Yuda H, Marandon K, Yu T, Jacobsen SE, Shabala S. 2011. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of Experimental Botany 62, 185–193.


Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background