Removal of environmental pollutants azo dye Acid Red 18 in aqueous solution using adsorbent activated carbon of walnut shell

Paper Details

Research Paper 01/07/2015
Views (529)
current_issue_feature_image
publication_file

Removal of environmental pollutants azo dye Acid Red 18 in aqueous solution using adsorbent activated carbon of walnut shell

Alireza Garousin, Saeed Jameh Bozorghi, Reza Moradi
J. Biodiv. & Environ. Sci. 7(1), 120-127, July 2015.
Copyright Statement: Copyright 2015; The Author(s).
License: CC BY-NC 4.0

Abstract

In this paper, removal of Acid Red 18 dye (AR18) from aqueous solutions using activated carbon of walnut shell (ACWS) adsorbent was studied. The prepared ACWS adsorbent was characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area analysis. The kinetic and isotherm of dye adsorption was studied. The effects of operational parameter such as: adsorbent dosage, pH and contact time on the process were studied and optimized. The optimal amount of adsorbent dosage 0.3 g, pH= 5 and contact time 15 min respectively. The results showed that the dye adsorption onto adsorbent followed Freundlich isotherm. Adsorption kinetics of AR18 dye onto the adsorbent followed the pseudo- first-order kinetic model. The results showed that ACWS adsorbent might be a suitable alternative to remove dye from colored aqueous solutions.

Adsorption equilibrium of dissolved organic matter and atrazine on granular activated carbon. Environmental Science and Technology 41, 6448-6453.

Azizian S, Jafari SH, Jaleh B. 2012. Enhancement of methyl violet removal by modification of TiO2 nanoparticles with AgI. Journal Industrial and Engineering Chemistry 18, 2124-2128.

Bhaskar M, Gnanamani A, Ganeshjeevan RJ, Chandrasekar R, Sadulla S, Radhakrishnan G. 2003. Analyses of carcinogenic aromatic amines released from harmful azo colorants by Streptomyces SP. SS07. Journal Chromatography A 1018, 117-123.

Chan LS, Cheung WH, McKay G. 2008. Adsorption of acid dyes by bamboo derived activated carbon. Desalination 218, 304-312.

Chao-Yin K, Chung-Hsin W, Jane-Yii W. 2008. Adsorption of direct dyes from aqueous.

Chegrouche S, Mellah A, Barkat M. 2009. Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies. Desalination 235,306–318.

Chen CL, Hu J, Xu D, Tan Xl, Meng YD, Wang XK. 2008. Surface complexation modeling of Sr(II) and Eu(III) adsorption onto oxidized multiwall carbon nanotubes. Journal Colloid Interface Science 323, 33-41.

Dakiky M, Nemcova, I. 2000. Aggregation of o,o′-Dihydroxy azo Dyes III. Effect of cationic, anionic and non-ionic surfactants on the electronic spectra of 2-hydroxy-5-nitrophenylazo-4-[3-methyl-1-(4″-sulfop-henyl)-5-pyrazolone]. Dyes Pigments 44, 181-193.

Dye Removal Ability. Water Air Soil Pollution 224, 1419.

Freundlich HMF. 1906. Uber die adsorption in lasugen. Zeitschrift für Physikalische Chemie (Leipzig) 57, 385–470.

Gong R, Li M, Yang C, Sun Y, Chen J. 2005. Removal of cationic dyes from aqueous solution by adsorption on peanut hull. Journal Hazardous Material 121, 247-250.

Guibal E, Roussy, J. 2007. Coagulation and flocculation of dye-containing solutions using a biopolymer (Chitosan). React. Funct. Polym. 67, 33-42.

Ho YS. 1995. Adsorption of heavy metals from waste streams by peat, Ph.D. Thesis, The.

Isak SJ, Eyring EM, Spikes JD, Meekins PA. 2000. Direct blue dye solutions: photo properties. Journal Photochemistry Photobiology A: Chemistry 134, 77-85.

Karpicz R, Gulbinas V, Undzenas A. 2000. Picosecond Spectroscopic Studies of Tautomers of a Bisazo Compound in Solutions. Journal Chinese Chemistry Society 47, 589-595.

Krishnani K, Meng X, Christodoulatos C, Boddun M. 2008. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. Journal Hazardous Material 153, 1222-1234.

Lagergren S. 1898. Zur theorie der sogenannten adsorption geloster stoffe. K. Sven. Vetenskapsakad. Handling 24, 1-39.

Langmuir I. 1916. The constitution and fundamental properties of solids and liquids. I. Solids. Journal of the American Chemical Society 38, 2221–2295.

Madaeni SS, Mansourpanah Y. 2004. Chemical cleaning of reverse osmosis membranes fouled by whey. Desalination 161, 13-24.

Mahmoodi NM. 2013. Nickel Ferrite Nanoparticle: Synthesis, Modification by Surfactant and. parameters. Journal of Colloid and Interface Science 327, 308-315.

Navarro A, Sanz F. 1999. Dye aggregation in solution: study of C.I. direct red I. Dyes Pigments 40,131-139.

Sahel K, Perol N, Chermette H. 2007. Photocatalytic decolorization of Remazol Black 5 (RB5) and Procion Red M X-5B-isotherm of adsorption, kinetic of decolorization and minera-lization.Applied Catalysis B: Environmental 77, 100-109.

Schreiber B, Schmalz V, Brinkmann T, Worch E. 2007. The effect of water temperature on the solutions by carbon nanotubes: Determination of equilibrium, kinetics and thermodynamics.

Tao J, Mao G, Daehne L. 1999. Asymmetrical Molecular Aggregation in Spherulitic Dye Films. Journal of the American Chemistry Society 121, 3475-3485. University of Birmingham, Birmingham, UK

Xuan Z, Tang Y, Li X, Liu Y, Luo F. 2006. Study on the equilibrium, kinetics and isotherm of biosorption of lead ions onto pretreated chemically modified orange peel. Biochemical Engendering Journal 30, 117-123.

Related Articles

Heterosis breeding, general and specific combining ability and stability studies in pearl millet: Current trends

Ram Avtar, Krishan Pal, Kavita Rani, Rohit Kumar Tiwari, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 117-124, August 2025.

Combining ability, heterosis and stability for yield and fibre quality traits in cotton: Breeding approaches and future prospects

Rohit Kumar Tiwari, Krishan Pal, R. P. Saharan, Ram Avtar, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 109-116, August 2025.

Bridging the COPD awareness gap in marginalized populations: Findings from a multicentre study in Khalilabad, Sant Kabir Nagar, Uttar Pradesh, India

Anupam Pati Tripathi, Jigyasa Pandey, Sakshi Singh, Smita Pathak, Dinesh Chaudhary, Alfiya Mashii, Farheen Fatima, J. Biodiv. & Environ. Sci. 27(2), 97-108, August 2025.

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.