Welcome to International Network for Natural Sciences | INNSpub

Paper Details

Review Paper | August 1, 2019

VIEWS 1
| Download

Removed by Author Request

Hameed Ur Rehman, Safiullah Khan, Haleema Sadia, Shahid Raza, Asma Irshad, Nadeem Sarwar, Dr. Irfan Irshad, Matiullah, Noushad Hussain, Muhammad Ali Subhani

Key Words:


Int. J. Biosci.15(2), 216-230, August 2019

DOI: http://dx.doi.org/10.12692/ijb/15.2.216-230

Certification:

IJB 2019 [Generate Certificate]

Abstract

Latest review on silver nanoparticles effect to acquaintance on gut bacteria

VIEWS 1

Copyright © 2019
By Authors and International Network for
Natural Sciences (INNSPUB)
http://innspub.net
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Removed by Author Request

Abid JP, Wark AW, Brevet PF, Girault HH. 2002. Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chemical Communications (7), 792-793.

Acharya D, Singha KM, Pandey P, Mohanta B, Rajkumari J, Singha LP. 2018. Shape dependent physical mutilation and lethal effects of silver nanoparticles on bacteria. Scientific reports 8(1), 201.

Actis L, Srinivasan A, Lopez-Ribot JL, Ramasubramanian AK, Ong JL. 2015. Effect of silver nanoparticle geometry on methicillin susceptible and resistant Staphylococcus aureus, and osteoblast viability. Journal of Materials Science: Materials in Medicine 26(7), 215.

Albanese A, Walkey CD, Olsen JB, Guo H, Emili A, Chan WC. 2014. Secreted biomolecules alter the biological identity and cellular interactions of nanoparticles. Acs Nano 8(6), 5515-5526.

Ansari MA, Khan HM, Khan AA, Ahmad MK, Mahdi AA, Pal R, Cameotra SS. 2014. Interaction of silver nanoparticles with Escherichia coli and their cell envelope biomolecules. Journal of basic microbiology 54(9), 905-915.

Ashkarran AA, Ghavami M, Aghaverdi H, Stroeve P, Mahmoudi M. 2012. Bacterial effects and protein corona evaluations: crucial ignored factors in the prediction of bio-efficacy of various forms of silver nanoparticles. Chemical research in toxicology 25(6), 1231-1242.

Badawy AME, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM. 2010. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environmental science & technology 44(4), 1260-1266.

Bennett BJ, Hall KD, Hu FB, McCartney AL, Roberto C. 2015. Nutrition and the science of disease prevention: a systems approach to support metabolic health. Annals of the New York Academy of Sciences 1352(1), 1-12.

Bergin IL, Witzmann FA. 2013. Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps. International journal of biomedical nanoscience and nanotechnology 3, (1-2).

Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK. 2009. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Letters in Applied Microbiology 48(2), 173-179.

Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, De Heer C, Sips AJ. 2009. Review of health safety aspects of nanotechnologies in food production. Regulatory toxicology and pharmacology 53(1), 52-62.

Burke DA, Axon ATR. 1989. Adhesive Escherichia Coli in Inflammatory Bowel Disease AND Infective Diarrhoea. The Pediatric Infectious Disease Journal 8(7), 480.

Chernousova S, Epple M. 2013. Silver as antibacterial agent: ion, nanoparticle, and metal. Angewandte Chemie International Edition 52 (6), 1636-1653.

Choi Y, Kim HA, Kim KW, Lee BT. 2018. Comparative toxicity of silver nanoparticles and silver ions to Escherichia coli. Journal of environmental sciences, 66, 50-60.

Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of biomedical materials research 52(4), 662-668.

Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. 2012. Microbial degradation of complex carbohydrates in the gut. Gut microbes 3(4), 289-306.

Fröhlich E, Fröhlich E. 2016. Cytotoxicity of nanoparticles contained in food on intestinal cells and the gut microbiota. International journal of molecular sciences 17(4), 509.

Galtier M, De Sordi L, Maura D, Arachchi H, Volant S, Dillies MA, Debarbieux L. 2016. Bacteriophages to reduce gut carriage of antibiotic resistant uropathogens with low impact on microbiota composition. Environmental microbiology, 18(7), 2237-2245.

Gao M, Sun L, Wang Z, Zhao Y. 2013. Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties. Materials Science and Engineering: C, 33(1), 397-404.

Gokulan K, Bekele AZ, Drake KL, Khare S. 2018. Responses of intestinal virome to silver nanoparticles: safety assessment by classical virology, whole-genome sequencing and bioinformatics approaches. International journal of nanomedicine 13, 2857.

Górski A, Jończyk-Matysiak E, Łusiak-Szelachowska M, Międzybrodzki R, Weber-Dąbrowska B, Borysowski J. 2018. Bacteriophages targeting intestinal epithelial cells: a potential novel form of immunotherapy. Cellular and molecular life sciences 75(4), 589-595.

Hadrup N, Lam HR. 2014. Oral toxicity of silver ions, silver nanoparticles and colloidal silver–a review. Regulatory Toxicology and Pharmacology 68(1), 1-7.

Hadrup N, Lam HR. 2014. Oral toxicity of silver ions, silver nanoparticles and colloidal silver–a review. Regulatory Toxicology and Pharmacology  68(1), 1-7.

Han X, Geller B, Moniz K, Das P, Chippindale, AK, Walker VK. 2014. Monitoring the developmental impact of copper and silver nanoparticle exposure in Drosophila and their microbiomes. Science of the Total Environment 487, 822-829.

Hitchman A, Smith GHS, Ju-Nam Y, Sterling, M, Lead JR. 2013. The effect of environmentally relevant conditions on PVP stabilized gold nanoparticles. Chemosphere 90(2), 410-416.

Holt KB, Bard AJ. 2005. Interaction of silver (I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44(39), 13214-13223.

Hong X, Wen J, Xiong X, Hu Y. 2016. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environmental science and pollution research, 23(5), 4489-4497.

Iavicoli I, Fontana L, Leso V, Bergamaschi A. 2013. The effects of nanomaterials as endocrine disruptors. International journal of molecular sciences 14(8), 16732-16801.

Javurek AB, Suresh D, Spollen WG, Hart ML, Hansen SA, Ellersieck MR, Rosenfeld CS. 2017. Gut dysbiosis and neurobehavioral alterations in rats exposed to silver nanoparticles. Scientific reports 7(1), 2822.

Jeong GN, Jo UB, Ryu HY, Kim YS, Song KS, Yu IJ. 2010. Histochemical study of intestinal mucins after administration of silver nanoparticles in Sprague–Dawley rats. Archives of toxicology 84(1), 63.

Kora AJ, Rastogi L. 2013. Enhancement of antibacterial activity of capped silver nanoparticles in combination with antibiotics, on model gram-negative and gram-positive bacteria. Bioinorganic chemistry and applications, 2013.

Krishnaraj C, Jagan EG, Rajasekar S,  Selvakumar P, Kalaichelvan PT, Mohan N. 2010. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surfaces B: Biointerfaces 76(1), 50-56.

Lee W, Kim KJ, Lee DG. 2014. A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli. Biometals 27(6), 1191-1201.

Linskens RK, Huijsdens XW, Savelkoul PHM, Vandenbroucke-Grauls CMJE, Meuwissen SGM. 2001. The bacterial flora in inflammatory bowel disease: current insights in pathogenesis and the influence of antibiotics and probiotics.  Scandinavian Journal of Gastroenterology 36(234), 29-40.

Losasso C, Belluco S, Cibin V, Zavagnin P, Mičetić I, Gallocchio F, Ricci A. 2014. Antibacterial activity of silver nanoparticles: sensitivity of different Salmonella serovars. Frontiers in microbiology 5, 227.

Lu W, Senapati D, Wang S, Tovmachenko O, Singh AK, Yu H, Ray PC. 2010. Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chemical physics letters 487(1-3), 92-96.

Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, Thomas LV. 2016. The gut microbiota and host health: a new clinical frontier. Gut 65(2), 330-339.

Maurice CF, Haiser HJ, Turnbaugh PJ. 2013. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell, 152(1-2), 39-50.

McQuillan JS, Groenaga Infante H, Stokes E, Shaw AM. 2012. Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology 6(8), 857-866.

Mercier-Bonin M, Despax B, Raynaud P, Houdeau E, Thomas M. 2018. Mucus and microbiota as emerging players in gut nanotoxicology: the example of dietary silver and titanium dioxide nanoparticles. Critical reviews in food science and nutrition 58(6), 1023-1032.

Mercier-Bonin M, Despax B, Raynaud P, Houdeau E, Thomas M. 2018. Mucus and microbiota as emerging players in gut nanotoxicology: the example of dietary silver and titanium dioxide nanoparticles. Critical reviews in food science and nutrition 58(6), 1023-1032.

Mercier-Bonin M, Despax B, Raynaud P, Houdeau E, Thomas M. 2018. Mucus and microbiota as emerging players in gut nanotoxicology: the example of dietary silver and titanium dioxide nanoparticles. Critical reviews in food science and nutrition 58(6), 1023-1032.

Ohkusa T, Koido S. 2015. Intestinal microbiota and ulcerative colitis. Journal of Infection and Chemotherapy 21(11), 761-768.

Ojha AK, Forster S, Kumar S, Vats S, Negi S,  Fischer I. 2013. Synthesis of well–dispersed silver nanorods of different aspect ratios and their antimicrobial properties against gram positive and negative bacterial strains. Journal of nanobiotechnology, 11(1), 42.

Pal S, Tak YK, Song JM. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied Environmental Microbiology 73(6), 1712-1720.

Pineda L, Chwalibog A, Sawosz E, Lauridsen C, Engberg R, Elnif J, Moghaddam HS. 2012. Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Archives of animal nutrition 66(5), 416-429.

Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Mende DR. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285), 59.

Quinteros MA, Aristizábal VC, Dalmasso PR, Paraje MG, Páez PL. 2016. Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity. Toxicology in vitro36, 216-223.

Romero-Urbina DG, Lara HH, Velázquez-Salazar JJ, Arellano-Jiménez MJ, Larios E, Srinivasan A, Yacamán MJ. 2015. Ultrastructural changes in methicillin-resistant Staphylococcus aureus induced by positively charged silver nanoparticles. Beilstein journal of nanotechnology, 6(1), 2396-2405.

Rosenfeld CS. 2015. Microbiome disturbances and autism spectrum disorders. Drug Metabolism and Disposition 43(10), 1557-1571.

Sarkar A, Kapoor S, Mukherjee T. 2005. Synthesis of silver nanoprisms in formamide. Journal of colloid and interface science, 287(2), 496-500.

Scanlan PD. 2017. Bacteria–bacteriophage coevolution in the human gut: implications for microbial diversity and functionality. Trends in microbiology 25(8), 614-623.

Silver S. 2003. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS microbiology reviews 27(2-3), 341-353.

Sintubin L, De Gusseme B, Van der Meeren P, Pycke BF, Verstraete W, Boon N. 2011. The antibacterial activity of biogenic silver and its mode of action. Applied microbiology and biotechnology,  91(1), 153-162.

Sotiriou GA, Pratsinis SE. 2010. Antibacterial activity of nanosilver ions and particles. Environmental science & technology 44(14), 5649-5654.

Tamboli DP, Lee DS. 2013. Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria. Journal of hazardous materials 260, 878-884.

Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG. 2006. Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicological sciences 95(2), 300-312.

Tian J, Wong KK, Ho CM, Lok CN, Yu WY, Che CM, Tam PK. 2007. Topical delivery of silver nanoparticles promotes wound healing. Chem Med Chem: Chemistry Enabling Drug Discovery 2(1), 129-136.

Van Den Brûle S, Ambroise J, Lecloux H, Levard C, Soulas R, De Temmerman PJ, Lison D. 2015. Dietary silver nanoparticles can disturb the gut microbiota in mice. Particle and fiber toxicology 13(1), 38.

Walczak AP, Fokkink R, Peters R, Tromp P, Herrera Rivera ZE, Rietjens IM, Bouwmeester H. 2012. Behaviour of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model. Nanotoxicology 7(7), 1198-1210.

Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Li Y. 2007. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicology letters 168(2), 176-185.

Wilding LA, Bassis CM, Walacavage K, Hashway S, Leroueil PR, Morishita M, Bergin, IL. 2016. Repeated dose (28-day) administration of silver nanoparticles of varied size and coating does not significantly alter the indigenous murine gut microbiome. Nanotoxicology 10(5), 513-520.

Williams KM, Gokulan K, Cerniglia CE, Khare, S. 2016. Size and dose dependent effects of silver nanoparticle exposure on intestinal permeability in an in vitro model of the human gut epithelium. Journal of nanobiotechnology, 14(1), 62.

Williams K, Milner J, Boudreau MD, Gokulan, K, Cerniglia CE, Khare S. 2015. Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicology 9(3), 279-289.

Xu H, Qu F, Xu H, Lai W, Wang YA, Aguilar Z. P, Wei H. 2012. Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157: H7. Biometals, 25(1), 45-53.

Yin C, Zhao W, Liu R, Liu R, Wang Z, Zhu L, Liu S. 2017. TiO2 particles in seafood and surimi products: Attention should be paid to their exposure and uptake through foods. Chemosphere 188, 541-547.

SUBMIT MANUSCRIPT

Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background