Welcome to International Network for Natural Sciences | INNSpub

Paper Details

Review Paper | August 1, 2019

| Download

Removed by Author Request

Asif Ali, Hameed Ur Rehman, Mehwish Khalid, Jamila Mughal, Haleema Sadia, Shahid Raza, Kamran Akhter, Wisal Ahmad, Fazle Akbar, Muhammad Zeeshan, Habibullah, Wajid Ullah

Key Words:

Int. J. Biosci.15(2), 260-273, August 2019

DOI: http://dx.doi.org/10.12692/ijb/15.2.260-273


IJB 2019 [Generate Certificate]


A review on the role of scorpion venom in drug development


Copyright © 2019
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Removed by Author Request

Ahluwalia SANCHITA, Shah NAKUL. 2014. Animal venom for treating breast cancer. International Journal of Pharma Science 6(9), 24-30.

Bennett PB, Guthrie HR. 2003. Trends in ion channel drug discovery: advances in screening technologies. Trends in biotechnology 21(12), 563-569.

Camargo AC, Ianzer D, Guerreiro JR, Serrano SM. 2012. Bradykinin-potentiating peptides: beyond captopril. Toxicon 59(4), 516-523.

Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. 2013. Complex cocktails: the evolutionary novelty of venoms. Trends in ecology & evolution 28(4), 219-229.

Chaisakul J, Hodgson WC, Kuruppu S, Prasongsook N. 2016. Effects of animal venoms and toxins on hallmarks of cancer. Journal of Cancer 7(11), 1571.

Chandy KG, Wulff H, Beeton C, Pennington M, Gutman GA, Cahalan MD. 2004. K+ channels as targets for specific immunomodulation. Trends in pharmacological sciences 25(5), 280-289.

Chen Y, Cao L, Zhong M, Zhang Y, Han C, Li Q Liu F. 2012. Anti-HIV-1 activity of a new scorpion venom peptide derivative Kn2-7. PloS one 7(4), e34947.

Cremonez C, Maiti M, Peigneur S, Cassoli J, Dutra A, Waelkens E, Arantes E. 2016. Structural and functional elucidation of peptide Ts11 shows evidence of a novel subfamily of scorpion venom toxins. Toxins 8(10), 288.

D’Suze G, Rosales A, Salazar V, Sevcik C. 2010. Apoptogenic peptides from Tityusdiscrepans scorpion venom acting against the SKBR3 breast cancer cell line. Toxicon 56(8), 1497-1505.

Da Mata ÉCG, Mourão CBF, Rangel M, Schwartz EF. 2017. Antiviral activity of animal venom peptides and related compounds. Journal of Venomous Animals and Toxins including Tropical Diseases 23(1), 3.

Daniele-Silva A, Machado RJ, Monteiro NK, Estrela AB, Santos EC, Carvalho E, &Fernandes-Pedrosa MF. 2016. Stigmurin and TsAP-2 from Tityusstigmurus scorpion venom: Assessment of structure and therapeutic potential in experimental sepsis. Toxicon 121, 10-21.

Daniele-Silva A, Machado RJ, Monteiro NK, Estrela AB, Santos EC, Carvalho E, Fernandes-Pedrosa MF. 2016. Stigmurin and TsAP-2 from Tityusstigmurus scorpion venom: Assessment of structure and therapeutic potential in experimental sepsis. Toxicon 121, 10-21.

Dardevet L, Rani D, Aziz T, Bazin I, Sabatier JM, Fadl M, De Waard M. 2015. Chlorotoxin: a helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins 7(4), 1079-1101.

Díaz-García A, Morier-Díaz L, Frión-Herrera Y, Rodríguez-Sánchez H, Caballero-Lorenzo Y, Mendoza-Llanes D, Fraga-Castro JA. 2013. In vitro anticancer effect of venom from Cuban scorpion Rhopalurusjunceus against a panel of human cancer cell lines. Journal of venom research 4, 5.

Silva MR, Beraldo WT, Rosenfeld G. 1949. Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. American Journal of Physiology-Legacy Content 156(2), 261-273.

Escoubas P, King GF. 2009. Venomics as a drug discovery platform. Expert review of proteomics 6(3), 221-224.

Gao B, Sherman P, Luo L, Bowie J, Zhu S. 2009. Structural and functional characterization of two genetically related meucin peptides highlights evolutionary divergence and convergence in antimicrobial peptides. The FASEB Journal 23(4), 1230-1245.

Gao B, Xu J, del Carmen Rodriguez M, Lanz-Mendoza H, Hernández-Rivas R, Du W, Zhu S. 2010. Characterization of two linear cationic antimalarial peptides in the scorpion Mesobuthuseupeus. Biochimie 92(4), 350-359.

Ghosh A, Roy R, Nandi M, Mukhopadhyay A. 2019. Scorpion Venom–Toxins that Aid in Drug Development: A Review. International Journal of Peptide Research and Therapeutics 25(1), 27-37.

Goudarzi HR, Shirvan AN, Noofeli M, Samianifard M. 2017. Bioassay of derived components from venom of Iranian medically important scorpions to identify the bradykinin potentiating factors. bioRxiv, 210856.

Gupta SD, Debnath A, Saha A, Giri B, Tripathi G, Vedasiromoni JR, Gomes A. 2007. Indian black scorpion (Heterometrusbengalensis Koch) venom induced antiproliferative and apoptogenic activity against human leukemic cell lines U937 and K562. Leukemia research 31(6), 817-825.

Gwee MC, Nirthanan S, Khoo HE, Gopalakrishnakone P, Kini RM, Cheah LS. 2002. Autonomic effects of some scorpion venoms and toxins. Clinical and Experimental Pharmacology and Physiology 29(9), 795-801.

Heinen TE, da Veiga ABG. 2011. Arthropod venoms and cancer. Toxicon, 57(4), 497-511.

Hmed B, Serria HT, Mounir ZK. 2013. Scorpion peptides: potential use for new drug development. Journal of toxicology, 2013.

Inceoglu B, Lango J, Jing J, Chen L, Doymaz F, Pessah IN, Hammock BD. 2003. One scorpion, two venoms: prevenom of Parabuthustransvaalicus acts as an alternative type of venom with distinct mechanism of action. Proceedings of the National Academy of Sciences 100(3), 922-927.

Israel MR, Tay B, Deuis JR, Vetter I. 2017. Sodium channels and venom peptide pharmacology. In Advances in Pharmacology 79, 67-116). Academic Press.

Kaczorowski GJ, McManus OB, Priest BT, Garcia ML. 2008. Ion channels as drug targets: the next GPCRs. The Journal of general physiology 131(5), 399-405.

Luna-Ramírez K, Quintero-Hernandez V, Juárez-González VR, Possani LD. 2015. Whole transcriptome of the venom gland from Urodacusyaschenkoi scorpion. PloS one 10(5), e0127883.

Machado RJ, Estrela AB, Nascimento AK, Melo MM, Torres-Rêgo M, Lima EO, Fernandes-Pedrosa MF. 2016. Characterization of TistH, a multifunctional peptide from the scorpion Tityusstigmurus: Structure, cytotoxicity and antimicrobial activity. Toxicon 119, 362-370.

Mishal R, Tahir HM, Zafar K, Arshad M. 2013. Anti-cancerous applications of scorpion venom. International Journal of Biological and Pharmaceutical Research 4(5), 356-360.

Monteith GR, Davis FM, Roberts-Thomson SJ. 2012. Calcium channels and pumps in cancer: changes and consequences. Journal of Biological Chemistry 287(38), 31666-31673.

Ning YN, Zhang WD, Wu LC. 2012. Study on the mechanism of polypeptide extract from scorpion venom to promote the restraint of cyclophosphamide on Lewis lung cancer. ZhongguoZhong xi yijie he zazhiZhongguoZhongxiyijiehezazhi= Chinese journal of integrated traditional and Western medicine 32(4), 537-542.

Ortiz E. Gurrola GB, Schwartz EF, Possani LD. 2015. Scorpion venom components as potential candidates for drug development. Toxicon 93, 125-135.

Oukkache N, Chgoury F, Lalaoui M, Cano AA, Ghalim N. 2013. Comparison between two methods of scorpion venom milking in Morocco. Journal of venomous animals and toxins including tropical diseases 19(1), 5.

Petricevich VL. 2010. Scorpion venom and the inflammatory response. Mediators of inflammation,  2010.

Quintero-Hernández V, Jiménez-Vargas JM, Gurrola GB, Valdivia HH, Possani LD. 2013. Scorpion venom components that affect ion-channels function. Toxicon 76, 328-342.

Rioli V, Prezoto BC, Konno K, Melo RL, Klitzke CF, Ferro ES, Portaro FC. 2008. A novel bradykinin potentiating peptide isolated from Bothropsjararacussu venom using catallytically inactive oligopeptidase EP24. 15. The FEBS journal 275(10), 2442-2454.

Smith JJ, Jones A, Alewood PF. 2012. Mass landscapes of seven scorpion species: The first analyses of Australian species with 1, 5-DAN matrix. Journal of venom research 3, 7.

Sun C, Fang C, Stephen Z, Veiseh O, Hansen S, Lee D, Zhang M. 2008. Tumor-targeted drug delivery and MRI contrast enhancement by chlorotoxin-conjugated iron oxide nanoparticles.

Utkin YN. 2015. Animal venom studies: Current benefits and future developments. World journal of biological chemistry 6(2), 28.

Verano-Braga T, Rocha-Resende C, Silva DM, Ianzer D, Martin-Eauclaire MF, Bougis PE, Pimenta AMC. 2008. TityusserrulatusHypotensins: a new family of peptides from scorpion venom. Biochemical and biophysical research communications 371(3), 515-520.

Williams DJ, Gutiérrez JM, Calvete JJ, Wüster W, Ratanabanangkoon K, Paiva O, O’Shea M. 2011. Ending the drought: new strategies for improving the flow of affordable, effective antivenoms in Asia and Africa. Journal of proteomics 74(9), 1735-1767.

Yan R, Zhao Z, He Y, Wu L, Cai D, Hong W, Li W. 2011. A new natural α-helical peptide from the venom of the scorpion Heterometruspetersii kills HCV. Peptides 32(1), 11-19.

Young HS, Herbette LG, Skita V. 2003. α-Bungarotoxin binding to acetylcholine receptor membranes studied by low angle X-ray diffraction. Biophysical journal 85(2), 943-953.

Zabihollahi R, Bagheri KP, Keshavarz Z, Motevalli F, Bahramali G, Siadat SD, Aghasadeghi MR. 2016. Venom components of Iranian scorpion Hemiscorpiuslepturus inhibit the growth and replication of human immunodeficiency virus 1 (HIV-1). Iranian biomedical journal 20(5), 259.

Zargan J, Umar S, Sajad M, Naime M, Ali S, Khan HA. 2011. Scorpion venom (Odontobuthusdoriae) induces apoptosis by depolarization of mitochondria and reduces S-phase population in human breast cancer cells (MCF-7). Toxicology in Vitro, 25(8), 1748-1756.

Zeng XC, Wang SX, Zhu Y, Zhu, SY, Li WX. 2004. Identification and functional characterization of novel scorpion venom peptides with no disulfide bridge from Buthusmartensii Karsch. Peptides 25(2), 143-150.


Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background