Welcome to International Network for Natural Sciences I INNSpub

Paper Details

Review Paper | November 1, 2019

VIEWS 5
| Download 1

Removed by Author Request

Hammad Khan1, Yasir Khan1, Hameed Ur Rehman, Uzma Ayaz, Allah Nawaz Khan, Osama Usman, Hamid Shah, Safiullah Khan Achakzai, Mehmoona Safeer Muhammad Ali Subhani

Key Words:


Int. J. Biosci.15(5), 55-71, November 2019

DOI: http://dx.doi.org/10.12692/ijb/15.5.55-71

Certification:

IJB 2019 [Generate Certificate]

Abstract

The role of gold nanoparticles for the photothermal cancer therapy

VIEWS 5

Copyright © 2019
By Authors and International Network for
Natural Sciences (INNSPUB)
http://innspub.net
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Removed by Author Request

Ahmad R. 2016. Advanced gold nanomaterials for photothermal therapy of cancer. Journal of nanoscience and nanotechnology 16(1), 67-80.

Almeida JPM, Chen AL, Foster A, Drezek R. 2011. In vivo biodistribution of nanoparticles. Nanomedicine 6(5), 815-835.

Annadhasan M, Kasthuri J, Rajendiran N. 2015. Green synthesis of gold nanoparticles under sunlight irradiation and their colorimetric detection of Ni 2+ and Co 2+ ions. RSC Advances 5(15), 11458-11468.

Balasubramanian SK, Jittiwat J, Manikandan J, Ong CN, Liya EY, Ong WY. 2010. Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 31(8), 2034-2042.

Balint R, Cassidy NJ, Cartmell SH. 2014. Conductive polymers: Towards a smart biomaterial for tissue engineering. Actabiomaterialia 10(6), 2341-2353.

Bardhan R, Lal S, Joshi A, Halas NJ. 2011. Theranosticnanoshells: from probe design to imaging and treatment of cancer. Accounts of chemical research 44(10), 936-946.

Benov L. 2015. Photodynamic therapy: current status and future directions. Medical Principles and Practice 24(1), 14-28.

Blanco E, Shen H, Ferrari M. 2015. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature biotechnology 33(9), 941.

Burke A, Ding X, Singh R, Kraft RA, Levi-Polyachenko N, Rylander MN, Hatcher HC. 2009. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proceedings of the National Academy of Sciences 106(31), 12897-12902.

Chen H, Zhang X, Dai S, Ma Y, Cui S, Achilefu S, Gu Y. 2013. Multifunctional gold nanostar conjugates for tumor imaging and combined photothermal and chemo-therapy. Theranostics 3(9), 633.

Chen WH, Lei Q, Luo GF, Jia HZ, Hong S, Liu YX, Zhang XZ. 2015. Rational design of multifunctional gold nanoparticles via host–guest interaction for cancer-targeted therapy. ACS applied materials & interfaces 7(31), 17171-17180.

Chithrani BD, Ghazani AA, Chan WC. 2006. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano letters 6(4), 662-668.

Cunningham A, Bürgi T. 2013. Bottom-up organisation of metallic nanoparticles. In Amorphous nanophotonics p 1-37. Springer, Berlin, Heidelberg.

Dong Z, Gong H, Gao M, Zhu W, Sun X, Feng L, Liu Z. 2016. Polydopamine nanoparticles as a versatile molecular loading platform to enable imaging-guided cancer combination therapy. Theranostics 6(7), 1031.

Eghtedari M, Liopo AV, Copland JA, Oraevsky AA, Motamedi M. 2008. Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano letters 9(1), 287-291.

Everts M, Saini V, Leddon JL, Kok RJ, Stoff-Khalili M, Preuss MA, Nikles DE. 2006. Covalently linked Au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. Nano letters 6(4), 587-591.

Fahlgren A, Bratengeier C, Gelmi A, Semeins, CM, Klein-Nulend J, Jager EW, Bakker AD. 2015. Biocompatibility of polypyrrole with human primary osteoblasts and the effect of dopants. PLoS One 10(7), e0134023.

Fang J, Nakamura H, Maeda H. 2011. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced drug delivery reviews 63(3), 136-151.

Gordon AC, Lewandowski RJ, Salem R, Day D. E, Omary RA, Larson AC. 2014. Localized hyperthermia with iron oxide–doped yttrium microparticles: Steps toward image-guided thermoradiotherapy in liver cancer. Journal of Vascular and Interventional Radiology 25(3), 397-404.

Hao F, Nehl CL, Hafner JH, Nordlander P. 2007. Plasmon resonances of a gold nanostar. Nano letters 7(3), 729-732.

Jiang W, Kim BY, Rutka JT, Chan WC. 2008. Nanoparticle-mediated cellular response is size-dependent. Nature nanotechnology 3(3), 145.

Kaur P, Aliru ML, Chadha AS, Asea A, Krishnan S. 2016. Hyperthermia using nanoparticles–promises and pitfalls. International Journal of Hyperthermia 32(1), 76-88.

Kelly KL, Coronado E, Zhao LL, Schatz GC. 2003. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment.

Kievit FM, Zhang M. 2011. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Accounts of chemical research 44(10), 853-862.

Larsson EM, Alegret J, Käll M, Sutherland D. S. 2007. Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano letters 7(5), 1256-1263.

Link S, El-Sayed MA. 1999. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. The Journal of Physical Chemistry B, 103(21), 4212-4217.

Liu Y, Yang M, Zhang J, Zhi X, Li C, Zhang C, Cui D. 2016. Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy. ACS nano 10(2), 2375-2385.

Lu S, Li X, Zhang J, Peng C, Shen M, Shi X. 2018. Dendrimer‐stabilized gold nanoflowers embedded with ultrasmall iron oxide nanoparticles for multimode imaging–guided combination therapy of tumors. Advanced Science 5(12), 1801612.

Luk KH, Hulse RM, Phillips TL. 1980. Hyperthermia in cancer therapy. Western Journal of Medicine 132(3), 179.

Manivasagan P, Bui NQ, Bharathiraja S, Moorthy MS, Oh YO, Song K. 2017. Multifunctional biocompatible chitosan-polypyrrolenanocomposites as novel agents for photoacoustic imaging-guided photothermal ablation of cancer. Scientific reports 7, 43593.

Mantso T, Vasileiadis S, Anestopoulos I, Voulgaridou GP, Lampri E, Botaitis S,  Chlichlia K. 2018. Hyperthermia induces therapeutic effectiveness and potentiates adjuvant therapy with non-targeted and targeted drugs in an in vitro model of human malignant melanoma. Scientific reports 8(1), 10724.

Moyer HR, Delman KA. 2008. The role of hyperthermia in optimizing tumor response to regional therapy. International Journal of Hyperthermia 24(3), 251-261.

Nolsøe CP, Torp-Pedersen S, Burcharth F, Horn T, Pedersen S, Christensen NE,  Lorentzen T. 1993. Interstitial hyperthermia of colorectal liver metastases with a US-guided Nd-YAG laser with a diffuser tip: a pilot clinical study. Radiology 187(2), 333-337.

Paciotti GF, Kingston DG, Tamarkin L. 2006. Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor‐targeted drug delivery vectors. Drug development research 67(1), 47-54.

Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P. 2010. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Advanced drug delivery reviews 62(3), 346-361.

Peeken JC, Vaupel P, Combs SE. 2017. Integrating Hyperthermia into Modern Radiation Oncology: what evidence is Necessary? Frontiers in oncology 7, 132.

Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P. 2005. Gold nanorods: synthesis, characterization and applications. Coordination chemistry reviews 249(17-18), 1870-1901.

Petryayeva E, Krull UJ. 2011. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Analyticachimicaacta 706(1), 8-24.

Pricker SP. 1996. Medical uses of gold compounds: past, present and future. Gold bulletin 29(2), 53-60.

Rodrigues CJ, Bobb JA, John MG, Fisenko S. P, El-Shall MS, Tibbetts KM. 2018. Nucleation and growth of gold nanoparticles initiated by nanosecond and femtosecond laser irradiation of aqueous [AuCl 4]. Physical Chemistry Chemical Physics 20(45), 28465-28475.

Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. 2005. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir, 21(23), 10644-10654.

Singh M, Manikandan S, Kumaraguru AK. 2011. Nanoparticles: a new technology with wide applications. Research Journal of Nanoscience and Nanotechnology 1(1), 1-11.

Smitha SL, Gopchandran KG, Smijesh N, Philip R. 2013. Size-dependent optical properties of Au nanorods. Progress in Natural Science: Materials International 23(1), 36-43.

Stuchinskaya T, Moreno M, Cook MJ, Edwards DR, Russell DA. 2011. Targeted photodynamic therapy of breast cancer cells using antibody–phthalocyanine–gold nanoparticle conjugates. Photochemical & Photobiological Sciences 10(5), 822-831.

Sumbayev VV, Yasinska IM, Garcia CP, Gilliland D, Lall GS, Gibbs BF, Calzolai L. 2013. Gold nanoparticles downregulate interleukin‐1β‐induced pro‐inflammatory responses. Small 9(3), 472-477.

Tsai CY, Lu SL, Hu CW, Yeh CS, Lee B, Lei H. Y. 2012. Size-dependent attenuation of TLR9 signaling by gold nanoparticles in macrophages. The Journal of Immunology 188(1), 68-76.

Vats M, Mishra S, Baghini M, Chauhan D, Srivastava R, De A. 2017. Near infrared fluorescence imaging in nano-therapeutics and photo-thermal evaluation. International journal of molecular sciences 18(5), 924.

Vines J, Lim DJ, Park H. 2018. Contemporary polymer-based nanoparticle systems for photothermal therapy. Polymers, 10(12), 1357.

Wang X, Wang H, Wang Y, Yu X, Zhang S, Zhang Q, Cheng Y. 2016. A facile strategy to prepare dendrimer-stabilized gold nanorods with sub-10-nm size for efficient photothermal cancer therapy. Scientific reports 6, 22764.

Wilson BC, Patterson MS. 2008. The physics, biophysics and technology of photodynamic therapy. Physics in Medicine & Biology 53(9), R61.

Yang S, You Q, Yang L, Li P, Lu Q, Wang S, Li N. 2019. Rodlike MSN@ Au Nanohybrid-Modified Supermolecular Photosensitizer for NIRF/MSOT/CT/MR Quadmodal Imaging-Guided Photothermal/Photodynamic Cancer Therapy. ACS applied materials & interfaces 11(7), 6777-6788.

Yen HJ, Hsu SH, Tsai CL. 2009. Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 5(13), 1553-1561.

Yin T, Li Y, Bian K, Zhu R, Liu Z, Niu K, Gao D. 2018. Self-assembly synthesis of vapreotide‑gold hybrid nanoflower for photothermal antitumor activity. Materials Science and Engineering: C, 93, 716-723.

Zare D, Akbarzadeh A, Bararpour N. 2010. Synthesis and functionalization of gold nanoparticles by using of poly functional amino acids. International Journal of Nanoscience and Nanotechnology 6(4), 223-230.

Zhang J. 2019. Rod in Tube: A Novel Nanoplatform for Highly Effective Chemo-Photothermal Combination Therapy toward Breast Cancer. ACS applied materials & interfaces 11(4), 3690-3703.

SUBMIT MANUSCRIPT

Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background