Research Progress on NAC Transcription Factors in Regulating Plant Terpenoid Biosynthesis

Paper Details

Review Paper 07/10/2024
Views (23) Download (7)
current_issue_feature_image
publication_file

Research Progress on NAC Transcription Factors in Regulating Plant Terpenoid Biosynthesis

Yifan Song, Linchuan Fang, Shang Gao, Feng Xu, Weiwei Zhang
Int. J. Biosci.25( 4), 169-180, October 2024.
Certificate: IJB 2024 [Generate Certificate]

Abstract

Terpenoids are among the most abundant compounds produced in plant secondary metabolism and play a crucial role in plant growth and development. They have extensive applications in medicine, biotechnology, and agriculture. As key regulators of gene expression, transcription factors significantly influence the biosynthesis and accumulation of terpenoids by modulating the expression of critical genes involved in their metabolic pathways, thereby enhancing plant stress resistance. This paper focuses on the biosynthetic pathways of terpenoids, emphasizing the role of NAC transcription factors across various plant species and their impact on terpenoid synthesis. Furthermore, it investigates the regulatory mechanisms by which NAC transcription factors govern terpenoid biosynthesis, providing valuable insights into their modes of action. Finally, this review outlines future research directions, aiming to offer new perspectives and strategies to deepen our understanding of how NAC transcription factors regulate terpenoid biosynthesis in plants.

VIEWS 17

Banerjee A, Sharkey TD. 2014. Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat Prod Rep 31(8), 1043-55. http://dx.doi.org/10.1039/c3np70124g.

Bhattacharjee P, Das R, Mandal A, Kundu P. 2017. Functional characterization of tomato membrane-bound NAC transcription factors. Plant molecular biology 93(4-5), 511-532. http://dx.doi.org/10.1007/s11103-016-0579-z.

Bouvier F, Rahier A, Camara B. 2005. Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res 44(6), 357-429. http://dx.doi.org/10.1016/j.plipres.2005.09.003.

Chen Q, Wang Q, Xiong L, Lou Z. 2011. A structural view of the conserved domain of rice stress-responsive NAC1. Protein & cell 2(1), 55-63. http://dx.doi.org/10.1007/s13238-011-1010-9.

Chen X, Lu S, Wang Y, Zhang X, Lv B, Luo L, Xi D, Shen J, Ma H, Ming F. 2015. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice. The Plant Journal 82(2), 302-14. http://dx.doi.org/10.1111/tpj.12819.

Chen Z, Feng H, Peng C, Zhang Z, Yuan Q, Gao H, Tang S, Xie C. 2023. Renoprotective Effects of Tanshinone IIA: A Literature Review. Molecules (Basel, Switzerland) 28(4), 1990. http://dx.doi.org/10.3390/molecules28041990.

Croteau, Rodney. 2002. Biosynthesis and catabolism of monoterpenoids. Chemical Reviews 87(5), 929-954. http://dx.doi.org/10.1021/CR00081A004.

Ding N, Zhao Y, Wang WX, Liu X, Shi W, Zhang D, Chen J, Ma S, Sun Q, Wang T, Lu M. 2023. Transcriptome analysis in contrasting maize inbred lines and functional analysis of five maize NAC genes under drought stress treatment. Frontiers in Plant Science (13), 1097719. http://dx.doi.org/10.3389/fpls.2022.1097719.

Dong Y, Zhang W, Li J, Wang D, Bai H, Li H, Shi L. 2022. The transcription factor LaMYC4 from lavender regulates volatile Terpenoid biosynthesis. BMC Plant Biology 22(1), 289. http://dx.doi.org/10.1186/s12870-022-03660-3.

Eva V, Diana C, Wilhelm G. 2013. Network Analysis of the MVA and MEP Pathways for Isoprenoid Synthesis. Annual Review of Plant Biology 64(1), 665-700. http://dx.doi.org/10.1146/annurev-arplant-050312-120116.

Franco-Zorrilla JM, López-Verrier I, Carrasco JL, Godoy M, Vera P, Solano R. 2014. DNA-binding specificities of plant transcription factors and their potential to define target genes. Proceedings of the National Academy of Sciences of the United States of America 111(6), 2367-72. http://dx.doi.org/10.1073/pnas.1316278111.

Fu CC, Han YC, Fan ZQ, Chen JY, Chen WX, Lu WJ, Kuang JF. 2016. The Papaya Transcription Factor CpNAC1 Modulates Carotenoid Biosynthesis through Activating Phytoene Desaturase Genes CpPDS2/4 during Fruit Ripening. Journal of agricultural and food chemistry 64(27), 5454-63. http://dx.doi.org/10.1021/acs.jafc.6b01020.

Gao T, Hou BH, Shao SX, Xu MT, Zheng YC, Jin S, Wang PJ, Ye NX. 2023. Differential metabolites and their transcriptional regulation in seven major tea cultivars (Camellia sinensis) in China. Journal of Integrative Agriculture 22(11), 3346-3363. http://dx.doi.org/10.1016/j.jia.2023.02.009.

Gong J, Zeng Y, Meng Q, Guan Y, Li C, Yang H, Zhang Y, Ampomah-Dwamena C, Liu P, Chen C, Deng X, Cheng Y, Wang P. 2021. Red light-induced kumquat fruit coloration is attributable to increased carotenoid metabolism regulated by FcrNAC22. Journal of experimental botany 72(18), 6274-6290. http://dx.doi.org/10.1093/jxb/erab283.

Habana M, Korczyk-Szabó J, Čerteková S, Ražná K. 2023. Lavandula Species, Their Bioactive Phytochemicals, and Their Biosynthetic Regulation. International Journal of Molecular Sciences 24(10), 8831. http://dx.doi.org/10.3390/ijms24108831.

Huang Y, Shi Y, Hu X, Zhang X, Wang X, Liu S, He G, An K, Guan F, Zheng Y, Wang X, Wei S. 2024. PnNAC2 promotes the biosynthesis of Panax notoginseng saponins and induces early flowering. Plant Cell Rep 43(3)73. http://dx.doi.org/10.1007/s00299-024-03152-8.

Hunter WN. 2007. The non-mevalonate pathway of isoprenoid precursor biosynthesis. The Journal of biological chemistry 282(30), 21573-7. http://dx.doi.org/10.1074/jbc.R700005200.

Iqbal A, Bocian J, Hameed A, Orczyk W, Nadolska-Orczyk A. 2022. Cis-Regulation by NACs: A Promising Frontier in Wheat Crop Improvement. International Journal of Molecular. Sciences 23(23), 15431. http://dx.doi.org/10.3390/ijms232315431.

Kim YK, Kim YB, Uddin MR, Lee S, Kim SU, Park SU. 2014. Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase. ACS synthetic biology 3(10), 773-9. http://dx.doi.org/10.1021/sb400194g.

Kim T, Kang K, Kim SH, An G, Paek NC. 2019. OsWRKY5 Promotes Rice Leaf Senescence via Senescence-Associated NAC and Abscisic Acid Biosynthesis Pathway. International Journal of Molecular Sciences 20(18), 4437. http://dx.doi.org/10.3390/ijms20184437.

Kleinow T, Himbert S, Krenz B, Jeske H, Koncz C. 2009. NAC domain transcription factor ATAF1 interacts with SNF1-related kinases and silencing of its subfamily causes severe developmental defects in Arabidopsis. Plant Science 177(4), 360-370. http://dx.doi.org/10.1016/j.plantsci.2009.06.011.

Kumar R, Kumar C, Roy Choudhury D, Ranjan A, Raipuria RK., Dubey KKD, Mishra A, Kumar C, Manzoor MM, Kumar A, Kumari A, Singh K, Singh GP, Singh R. 2024. Isolation, Characterization, and Expression Analysis of NAC Transcription Factor from Andrographis paniculata (Burm. f.) Nees and Their Role in Andrographolide Production. Genes (Basel) 15(4), 422. http://dx.doi.org/10.3390/genes15040422.

Liu GS, Zhang YY, Dai HY, Song W. 2012. Bioinformatics analysis of the apple NAC transcription factor family. Jiangsu Agricultural Sciences 40(06), 14-23. http://dx.doi.org/10.15889/j.issn.1002-1302.2012.06.132.

Liu C, Zhao M, Ma H, Zhang Y, Liu Q, Liu S, Wang Y, Wang K, Zhang M, Wang Y. 2023. The NAC Transcription Factor PgNAC41-2 Gene Involved in the Regulation of Ginsenoside Biosynthesis in Panax ginseng. International Journal of Molecular Sciences  24(15), 11946. http://dx.doi.org/10.3390/ijms241511946.

Lv Z, Wang S, Zhang F, Chen L, Hao X, Pan Q, Fu X, Li L, Sun X, Tang K. 2016. Overexpression of a Novel NAC Domain-Containing Transcription Factor Gene (AaNAC1) Enhances the Content of Artemisinin and Increases Tolerance to Drought and Botrytis cinerea in Artemisia annua. Plant & cell physiology 57(9), 1961-71. http://dx.doi.org/10.1093/pcp/pcw118.

Mechri B, Tekaya M, Attia F, Hammami M, Chehab H. 2020. Drought stress improved the capacity of Rhizophagus irregularis for inducing the accumulation of oleuropein and mannitol in olive (Olea europaea) roots. Plant Physiology and Biochemistry 156, 178-191. http://dx.doi.org/10.1016/j.plaphy.2020.09.011.

Mohanta TK, Yadav D, Khan A, Hashem A, Tabassum B, Khan AL, Abd Allah EF, Al-Harrasi A. 2020. Genomics, molecular and evolutionary perspective of NAC transcription factors. PloS one 15(4), e0231425. http://dx.doi.org/10.1371/journal.pone.0231425.

Nieuwenhuizen NJ, Chen X, Wang MY, Matich AJ, Perez RL, Allan AC, Green SA, Atkinson RG. 2015. Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors. Plant physiology 167(4), 1243-1258. http://dx.doi.org/10.1104/pp.114.254367.

Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A. 2005. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. Journal of chemical ecology 31(5), 1187-203. http://dx.doi.org/10.1007/s10886-005-4256-y.

Pazouki L, Niinemets Ü. 2016. Multi-substrate terpene synthases: their occurrence and physiological significance. Frontiers in Plant Science 7, 1019. http://dx.doi.org/10.3389/fpls.2016.01019.

Pingault L, Varsani S, Palmer N, Ray S, Williams WP, Luthe DS, Ali JG, Sarath G, Louis J. 2021. Transcriptomic and volatile signatures associated with maize defense against corn leaf aphid. BMC Plant Biology 21, 138. http://dx.doi.org/10.1186/s12870-021-02910-0.

Puranik S, Sahu PP, Srivastava PS, Prasad M. 2012. NAC proteins: regulation and role in stress tolerance. Trends in Plant Science 17(6), 369-381. http://dx.doi.org/10.1016/j.tplants.2012.02.004.

Renault H, Bassard JE, Hamberger B, Werck-Reichhart D. 2014. Cytochrome P450-mediated metabolic engineering: current progress and future challenges. Current Opinion in Plant Biology (19), 27-34. http://dx.doi.org/10.1016/j.pbi.2014.03.004.

Rong H, Ren SJ, Wang ZP, Wang F, Zhou Y. 2020. Advances in the Study of the Structure and Function of Plant NAC Transcription Factors. Jiangsu Agricultural Sciences 48(18), 44-53. http://dx.doi.org/10.15889/j.issn.1002-1302.

Sallaud C, Rontein D, Onillon S, Jabès F, Duffé P, Giacalone C, Thoraval S, Escoffier C, Herbette G, Leonhardt N, Causse M, Tissier A. 2009. A novel pathway for sesquiterpene biosynthesis from Z, Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites. The Plant cell 21(1), 301-317. http://dx.doi.org/10.1105/tpc.107.057885.

Sanjari S, Shirzadian-Khorramabad R, Shobbar ZS, Shahbazi M. 2019. Systematic analysis of NAC transcription factors’ gene family and identification of post-flowering drought stress responsive members in sorghum. Plant cell reports 38(3), 361-376. http://dx.doi.org/10.1007/s00299-019-02371-8.

Singh G, Singh G, Singh P, Parmar R, Paul N, Vashist R, Swarnkar MK, Kumar A, Singh S, Singh AK, Kumar S, Sharma RK. 2017. Molecular dissection of transcriptional reprogramming of steviol glycosides synthesis in leaf tissue during developmental phase transitions in Stevia rebaudiana Bert. Scientific Reports 7(1), 11835. http://dx.doi.org/10.1038/s41598-017-12025-y.

Souer E, Van Houwelingen A, Kloos D, Mol J, Koes R. 1996. The No Apical Meristem Gene of Petunia Is Required for Pattern Formation in Embryos and Flowers and Is Expressed at Meristem and Primordia Boundaries. Cell 85(2), 159-170. http://dx.doi.org/10.1016/s0092-8674(00)81093-4.

Srivastava Y, Tripathi S, Mishra B, Sangwan NS. 2022. Cloning and homologous characterization of geranylgeranyl pyrophosphate synthase (GGPPS) from Withania somnifera revealed alterations in metabolic flux towards gibberellic acid biosynthes. Planta 256(1), 4. http://dx.doi.org/10.1007/s00425-022-03912-4.

Su X, Guo W, Yuan B, Wang D, Liu L, Wu X, Zhang Y, Kong X, Lin N. 2021. Artesunate attenuates bone erosion in rheumatoid arthritis by suppressing reactive oxygen species via activating p62/Nrf2 signaling. Biomedicine & Pharmacotherapy 137, 111382. http://dx.doi.org/10.1016/j.biopha.2021.111382.

Thapa HR, Naik MT, Okada S, Takada K, Molnár I, Xu Y, Devarenne TP. 2016. A squalene synthase-like enzyme initiates production of tetraterpenoid hydrocarbons in Botryococcus braunii Race L. Nature communications 7(1), 11198. http://dx.doi.org/10.1038/ncomms11198.

Wang Y, Yu W, Ran L, Chen Z, Wang C, Dou Y, Qin Y, Suo Q, Li Y, Zeng J, Liang A, Dai Y, Wu Y, Ouyang X, Xiao Y. 2021. DELLA-NAC Interactions Mediate GA Signaling to Promote Secondary Cell Wall Formation in Cotton Stem. Frontiers in Plant Science 12, 655127. http://dx.doi.org/10.3389/fpls.2021.655127.

Xu Y, Zhu C, Xu C, Sun J, Grierson D, Zhang B, Chen K. 2019. Integration of Metabolite Profiling and Transcriptome Analysis Reveals Genes Related to Volatile Terpenoid Metabolism in Finger Citron (C. medica var. sarcodactylis). Molecules 24(14), 2564. http://dx.doi.org/10.3390/molecules24142564.

Yang Z, Mei W, Wang H, Zeng J, Dai H, Ding X. 2023. Comprehensive Analysis of NAC Transcription Factors Reveals Their Evolution in Malvales and Functional Characterization of AsNAC019 and AsNAC098 in Aquilaria sinensis. International Journal of Molecular Sciences 24, 17384. http://dx.doi.org/10.3390/ijms242417384.

Yin X, Yang H, Ding K, Luo Y, Deng W, Liao J, Pan Y, Jiang B, Yong X, Jia Y. 2024. PfERF106, a novel key transcription factor regulating the biosynthesis of floral terpenoids in Primula forbesii Franch. BMC Plant Biology 24(1), 851. http://dx.doi.org/10.1186/s12870-024-05567-7.

Youyou T. 2016. ChemInform Abstract: Artemisinin — A Gift from Traditional Chinese Medicine to the World (Nobel Lecture). Angewandte Chemie (International ed. in English) 55(35), 10210-10226. http://dx.doi.org/10.1002/anie.201601967.

Yu SZ, Yang ZX, Yu Q, Song SH, Zhang XL, Zhao HN, Zhang CY, Lin YC, Lei B. 2022. Identification and expression analyses of the NAC transcription factor family in Nicotiana tabacum L. Acta Tabacaria Sinica 28(02), 111-121. http://dx.doi.org/10.16472/j.chinatobacco.2021.T0158

Zhang H, Xu J, Chen H, Jin W, Liang Z. 2021. Characterization of NAC family genes in Salvia miltiorrhiza and NAC2 potentially involved in the biosynthesis of tanshinones. Phytochemistry 191, 1129-32. http://dx.doi.org/10.1016/j.phytochem.2021.112932.

Zhang X, Li L, Lang Z, Li D, He Y, Zhao Y, Tao H, Wei J, Li Q, Hong G. 2022. Genome-wide characterization of NAC transcription factors in Camellia sinensis and the involvement of CsNAC28 in drought tolerance. Frontiers in Plant Science 13,1065261. http://dx.doi.org/10.3389/fpls.2022.1065261.

Zhao Y, Duan X, Wang L, Gao G, Xu C, Qi H. 2022. Transcription Factor CmNAC34 Regulated CmLCYB-Mediated β-Carotene Accumulation during Oriental Melon Fruit Ripening. International Journal of Molecular Sciences 23(17), 9805. http://dx.doi.org/10.3390/ijms23179805.

Zhou C, Bo W, El-Kassaby YA, Li W. 2024. Transcriptome profiles reveal response mechanisms and key role of PsNAC1 in Pinus sylvestris var. mongolica to drought stress. BMC Plant Biology 24(1), 343. http://dx.doi.org/10.1186/s12870-024-05051-2.

Zhu F, Luo T, Liu C, Wang Y, Zheng L, Xiao X, Zhang M, Yang H, Yang W, Xu R, Zeng Y, Ye J, Xu J, Xu J, Larkin RM, Wang P, Wen W, Deng X, Fernie AR, Cheng Y.  2020. A NAC transcription factor and its interaction protein hinder abscisic acid biosynthesis by synergistically repressing NCED5 in Citrus reticulata. Journal of Experimental Botany 71(12), 3613-3625. http://dx.doi.org/10.1093/jxb/eraa118.

Zhu M, Chen G, Zhou S, Tu Y, Wang Y, Dong T, Hu Z. 2014. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant & cell physiology 55(1), 119-35. http://dx.doi.org/10.1093/pcp/pct162