Response of tomato wild species, landraces and commercial cultivars to Meloidogyne javanica infection as revealed by molecular and conventional approaches

Paper Details

Research Paper 01/12/2015
Views (559)
current_issue_feature_image
publication_file

Response of tomato wild species, landraces and commercial cultivars to Meloidogyne javanica infection as revealed by molecular and conventional approaches

Shalaleh Moslehi, Gholamreza Niknam, SeyedAbolghasemMohammadi, Maghsoud Pazhouhandeh
J. Biodiv. & Environ. Sci. 7(6), 80-89, December 2015.
Copyright Statement: Copyright 2015; The Author(s).
License: CC BY-NC 4.0

Abstract

In present study, response of some commercial cultivars, landraces andwild species of tomato were evaluated against Meloidogynejavanica.Furthermore, presence of Mi-1 alleles in the plant materials was traced using PMiF3/PMiR3, Mi23F/Mi23R and REXF1/REXR2 primer pairs. In greenhouse experiments, seven genotypes (ES1002, Super Beita, Ant 93-04, Samrudhi, Nun 6108, Pascal and Solanumperuvianum[LA0111])were less affectedby the nematode while the rest figured more susceptible. Using PMiF3/PMiR3 primer pair, two fragments of 350 and 550bp were amplified in the seven genotypes, whereas in the remaining genotypes only the allele of 350 bp was generated. Based on Mi23F/Mi23R primer pair, the seven genotypes were found heterozygote for 380bp and 430bp fragments and the others showed only a single allele of 430 bp. In all the genotypes except Super Strain B when were treated with REXF1/REXR2 primer pair, a 750bp fragment was realized. Digestion of the amplified fragments with TaqI restriction enzyme resulted in the appearance of 550bp and 150bp fragments in nine cultivars, the fore mentioned seven genotypes plus a landrace (Laleh) and Solanumhabrochaites (LA1223). It can be concluded that the Mi23 and PMi3 markers are more reliable for separating the resistant genotypes from susceptible ones.

Bakker E, Dees R, Bakker J, Govers A. 2006. Mechanisms involved in plant resistance tonematodes. In:Tuzun S,Bent E,Eds.Multigenic and Induced Systemic Resistance inPlants. Springer Science + Business Media, 314-334.

Bendezu IF. 2004. Detection of the Mi-1.2 tomato gene by PCR using non-organicDNA purification. Nematropica 34,23–30.

Cortada L, Mantelin S, Verdejo-Lucas S, Kaloshian I. 2012. Marker analysis for detection of the Mi-1.2 resistance gene in tomato hybrid rootstocks and cultivars. Nematology 14, 631-642.

Danso Y, Akromah R, Osei K. 2011. Molecular marker screening of tomato, (SolanumlycopersicumL.) germplasm for root-knot nematodes (Meloidogynespecies) resistance. African Journal of Biotechnology 10, 1511-1515.

Devran Z, Başköylü B, Taner A, Doğan F. 2013. Comparison of PCR-based molecular markers for identification of Mi gene. Acta Agriculturae Scandinavica, Section B- Soil and Plant Science 63, 395-402.

Devran Z, Elekcioglu IH. 2004. The screening of F2 plants for the root-knot nematode resistance gene, Mi by PCR in tomato. Turkish Journal of Agriculture and Forestry 28, 253-257.

Devran Z, Sogut MA, Mutlu N. 2010. Response of tomato rootstocks with the Miresistance gene to Meloidogyneincognita race 2 at different soil temperatures. PhytopathologiaMediterranea 49, 11-17.

Dropkin V. 1969. The necrotic reaction of tomatoes and other hosts resistant to Meloidogyne: Reversal by temperature. Phytopathology 59, 1632-1637.

El MehrachK, Mejía L, Gharsallah-Couchane S, Salus MS, Martin CT, Hatimi A, Vidavski F, Williamson VM, Maxwell DP. 2005. PCR-based methods for tagging the Mi-1 locus for resistance to root-knot nematode in begomovirus-resistant tomato germplasm. ActaHorticulturae 695, 263–270.

Garcia BE, Mejía L, Salus MS, Martin CT, Seah S, Williamson VM, Maxwell DP. 2007.  A  co-dominant SCAR marker, Mi23, for detection of theMi-1.2 gene for resistanceto root-knot nematode in tomato germplasm. 1-13. Available at: [Date accessed:18 August 2007] http://www.plantpath.wisc.edu

Goggin FL, Shah G, Williamson VM, Ullman DE. 2004. Instability of Mi-mediated nematode resistance in transgenic tomato plants. Molecular Breeding 13, 391–394.

Hussey RS, Barker KR. 1973. A comparison of methods of collecting inocula ofMeloidogyne spp. including a new technique. Plant Disease Reporter 57, 1025-1028.

Jacquet M, Bongiovanni M, Martinez M, Verschave P, Wajnberg E, Castagnone-Sereno P. 2004. Variation in resistance to the root-knot nematode Meloidogyneincognita in tomato enotypes bearing the Migene. Plant Pathology 54, 93-99.

LodhiMA, Ye GN, Weeden NF, Reisch BI. 1994. A simple and efficientmethod for DNA extraction from grapevine cultivars and Vitis species. PlantMolecular Biology Reporter 12, 6-13.

MoensM, Perry RN, Starr JL. 2009. Meloidogyne species- a diverse group of novel andimportant group of plant parasites. In: Perry RN,MoensM,StarrJL, Eds.Root-knot nematodes. Wallingford, UK: CABI Publishing, 1-17.

Ornat C, Verdejo-Lucas S, Sorribas FJ. 2001. A population of Meloidogynejavanica in Spain virulent to the Mi resistance gene in tomato. Plant Disease 85, 271- 276.

Seah S, Williamson VM, Garcia BE, Mejı´a L, Salus MS, Martin CT, Maxwell DP. 2007. Evaluation of a co-dominant SCAR marker for detection of the Mi-1 locus for resistance to root-knot nematode in tomato germplasm. Tomato Genetics Cooperative Reporter 57, 37-40.

Skupinova S, Vejl P, Sedlak P, Bardova M, Srbak L, Klapste P, Zouhar M, Tesarova B. 2004.  Using  DNA  markers  for  characterization  of tomato resistance against root nematode Meloidogyne incognita. Plant Soil and Environment 50, 59–64.

Sorribas FJ, Verdejo-Lucas S. 1994. Survey of Meloidogyne spp. in tomato production fields of BaixLlobregat County, Spain. Journal of Nematology 26, 731-736.

Taylor AL, Sasser JN. 1978. Biology, Identification and control of root-knot nematodes (Meloidogyne species). North Carolina State University Graphics. Raleigh NC,USA.

Williamson VM, Ho, HY, Miller N, Kaloshian I. 1994. A PCR-basedmarker tightly linked to nematode resistance gene Mi, in tomato.Theoretical and Applied Genetics 87, 757-763.

Williamson VM, Roberts PA. 2009. Mechanisms and genetics of resistance.In:Perry RN, Moens M, Starr JL, Eds.Root-knot nematodes.Wallingford, UK: CABIPublishing, 301-325.

Zamir D, Ekstein-Michelson I, Zakay Y, Navot N, Zeidan M, Sarfatti M, Eshed Y, Harel E, Pleban T, Van-Oss H, Kedar N, Rabinowitch HD, Czosnec H. 1994. Mapping andintrogression of a tomato yellow leaf curl virus tolerance gene Ty-1.Theoretical and Applied Genetics 88, 141-146.

Related Articles

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.

Bacteriological analysis of selected fishes sold in wet markets in Tuguegarao city, Cagayan, Philippines

Lara Melissa G. Luis, Jay Andrea Vea D. Israel, Dorina D. Sabatin, Gina M. Zamora, Julius T. Capili, J. Biodiv. & Environ. Sci. 27(2), 1-9, August 2025.

Effect of different substrates on the domestication of Saba comorensis (Bojer) Pichon (Apocynaceae), a spontaneous plant used in agroforestry system

Claude Bernard Aké*1, Bi Irié Honoré Ta2, Adjo Annie Yvette Assalé1, Yao Sadaiou Sabas Barima1, J. Biodiv. & Environ. Sci. 27(1), 90-96, July 2025.