Responses of Typha latifolia subjected to metal stress

Paper Details

Research Paper 01/07/2017
Views (218) Download (7)
current_issue_feature_image
publication_file

Responses of Typha latifolia subjected to metal stress

Bensaid Marwa, Meksem Amara Leila, Meksem Nabila, Ferfar Meriem, Djebar Mohamed Reda
J. Bio. Env. Sci.11( 1), 9-13, July 2017.
Certificate: JBES 2017 [Generate Certificate]

Abstract

In order to preserve the quality of the waste water, we use the macrophyte plants, which go in the direction of the phyto-purification of an aquatic ecosystem. These purifying plants cleanse the water and transform the organic residues into nutritional elements from which they feed. They have a great ability to fix heavy metals. In our job, we orientated our study on the impact of metallic dusts rejected by the steel complex “Arcellor-Mittal” El Hadjar Annaba, on a macrophyte Typha latifolia. The sites of samples (S1, S2, S3, and S4) are located in the neighbourhood of the steel complex, and the least polluted site (St) is located far from the sources of pollution. We studied several parameters: of growth (medium number of roots), biochemical (content in protein at root level) and enzymatique (proportion of root catalase activity).We were also studying, the composition of metallic dusts rejected by the high stoves of complex Arcellor Mittal. Acquired results show an increase of parameters studied in the four sites of sample (S1, S2, S3, S4), compared with the site least polluted (St). Increase varies between significant (p ≤ 0.05), and very highly significant (p ≤ 0.001). These results explain the capacity of Typha latifolia to fit to the oxidative stress generated by metallic dusts, Typha latifolia proves to be a very good bioaccumulative of heavy metals; we recorded a stimulation in growth, in content in proline and in activity catalase.

VIEWS 8

Alia P, Pardha S. 1991. “Proline accumulation under heavy metal stress”, Journal of Plant Physiology 138, 554-558.

Association Française de Normalisation. NF A20-427 (aout 1985). ”Dosage du cuivre ”: laboratoire centrale du complexe Arcellor-Mittal. janvier 2016.

Association Française de Normalisation, NF ISO 8753. (1987). “Dosage du plomb et du zinc”: laboratoire centrale du complexe Arcellor-Mittal. janvier 2016.

Bensoltane S. 2006.” Evaluation de la toxicité du nitrate d’ammonium (NH4NO3) sur différents modèles biologiques: Mammifères, Végétaux, et Protistes ciliés”. Thèse de doctorat d’état en Eco toxicologie Animale. Université d’Annaba. 153p.

Boscoloa PRS, Menossi M, Jorge RA. 2003. Aluminum-induced oxidative stress in maize, Journal of Phytochimestry, 62, 181-189.

Dabouineau L, Lamy Y, Collas Ph. 2005.”Phytoremédiation et phytoépuration ou l’utilisation des plantes pour la dépollution et l’épuration des eaux usées”.

Deruelle S. 1983.”Écologie des lichens du bassin parisien. Impact de la pollution atmosphérique et relation avec les facteurs climatiques”. Thèse de doctorat: Université Pierre et Marie Curie, Paris (France).

Esser D. 1999. ”Les phragmifiltres”. Journée d’information technique «les filtres plantés de roseaux ». Metz. 8 avril 1999. Agence de l’eau Rhin–meuse.

Farago ME, Mullen WA. 1979. “Plants which accumulate metals”. Part IV. A possible copper-proline complexe from the roots of Armiria maritime. Inorganica Chimica Acta; 32, 93-94.

Hellmann H, Funck D, Rentsch D, Frommer WB. 2006. “Hypersensitivity of an Arabidopsis sugar signalingmut toward exogenous proline application”. Journal of Plant Physiolgy.16 (2), 149-158.

Khaldi  F. 2014. “Mécanismes d’action des polluants chimiques industriels (engrais et NOx) sur des bio-indicateurs de pollution (Mousses et Lichens). Thèse de doctorat d’état.

Kleche   M. 2013. ”Utilisation des systèmes biologiques dans l’épuration des eaux usées cas de la région d’Annaba”. Thèse de doctorat d’état. Université Badji Mokhtar Annaba.

Journal Officielle de la République Algérienne JORA. 2006. N°26. Laboratoire centrale du complexe Arcellor- Mittal. ”Dosage Gravimétrique de la silice/dosage volumétrique du fer, manganèse et aluminium”.2016.

Lagadic L, Caquet T, Amiard JC, Ramade F. 1997. ”Biomarqueurs en  écotoxicologie. Aspects fondamentaux”. Paris : Masson.

Meksem Amara L. 2007.”Etude des effets de deux fongicides: le Flamenco SC et le TILIT250 EC sur la physiologie, la croissance et le métabolismeénergétique des racines de Triticum durmDESF: variétés GTA et VITRON”. Thèse de Doctorat d’état. Université Badji Mokhtar Annaba.

Moffat AJ, Armstrong AT, Ockleston J. 2001. “The optimization of sewage sludge and effluent disposal on energy crops of short rotation hybrid poplar”. Journal of Biomass and Bioenergy. 20, 161-169.

Pardha S, Alia P, VaniB. 1993. “Inhibition of mitochondrial electron transport is the prime cause behind proline accumulation during mineral deficiency in Oryzasativa”. Journal of Plant and Soil: 155/156: 465–468.

Sandermann H. 1994.”Higher plant metabolism of xenobiotics; the green liver. Concept Pharmacogenetics 4(5), 225-41.

Tlidjen S. 2014. ”Impact de xénobiotiques, sur une végétation aquatique, épuratrice des eaux usées: biométrie, aspect biochimique, enzymatique, métabolisme énergétique et cytotoxicité”.Thèse de doctorat d’état, université Badji Mokhtar Annaba p 70.

Tripathi BN, Mehta SK, Anshu A, Gaur JP. 2006.”Oxidative stress in Scenedesmus sp. During short and long-term exposure to Cu2+ and Zn2+”, Journal of Chemosphere 62(4), 538-44.