ROS and redox signaling in the response of stems of wheat durum to abiotic stress
Paper Details
ROS and redox signaling in the response of stems of wheat durum to abiotic stress
Abstract
Cereals hold an important place in agricultural research programs. In Algeria, this place is more important because the country wants to achieve stable production of cereals, especially concerning wheat and barley. However, water availability is a major factor which is limiting the productivity of cereal in Algeria. This work focuses on studying the effects of water deficit on the rods of a model plant: wheat (Triticum durum) variety GTA. After germination, the plants were subjected to a water stress during 03, 05, 07 and 09 days. Our results showed an increase in catalase activity (CAT), ascorbate-peroxidase (APX) (specific Enzymes of cellular detoxification system) and a lesser degree of activity of Guaiacol-peroxidase (GPX). On the other hand, we also showed a stong surge in the rate of hydrogen peroxide (H2O2) in rods. This increase is proportional to the degree of induced stress. The stress has caused toxicity which was manifested by the production of reactive forms of oxygen, hydrogen peroxide and superoxide anion in rods of our plant model.
Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373-399. http://dx.doi.org/10.1146/nnev.arplant.55.031903.11701
Asada K. 2006. Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions. Plant Physiology 141(2), 391-396.
Asada K, Kiso K, Yoshikawa K. 1974 Univalent Reduction of Molecular Oxygen by Spinach Chloroplasts on Illumination. Journal of Biological Chemestry 249(7), 2175-2181.
Baxter CJ, Redestig H, Schauer N. 2007. The metabolic reponse of heterotrophic Arabidopsis cells to oxidative stress. Plant Physiology 143, 312-325. http://dx.doi.org/10.1104/pp.106.090431
Beyer WF, Fridovich I. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry 161, 559-566. http://dx.doi.org/10.1016/0003-2697(87)90489-1
Boscoloa P, Menossib M, Renato Jorgea A. 2003. Aluminium-induced oxidative stress in maize. Phytochemistry 62, 181-189. http://dx.doi.org/10.1016/S0031%209422(02)00723 -9
Boveris A, Chance B. 1973. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochemical Journal 134(3), 707-716 http://dx.doi.org/10.1172/JCI116700
Brodribb TJ, Holbrook NM. 2003. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiol 132, 2166-2173 http://dx.doi.org/10.1104/pp.103.023879
Buchanan BB, Blamer Y. 2005. Redox regulation: a broadening horizon. Annual Review of Plant Biology 56, 187- 220. http://dx.doi.org/10.1146/annurev.arplant.56.03260 4.144246
Clarke JM, Mc Caig JN. 1982. Evaluation of techniques for screening for drought resistance in wheat. Crop Science 22, 503.
Cleland RE, Grace SC. 1999. Voltammetric detection of superoxide production by photosystem II. Febs Letters 457(3), 348-352. http://dx.doi.org/10.1016/S0014-5793(99)01067-4
Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F. 2000. Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences 57(5), 779-795. http://dx.doi.org/10.1007/s000180050041
Edreva A. 2005. Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach. Agriculture, Ecosystems and Environment 106(2-3), 119-133. http://dx.doi.org/10.1089/152308603321223531
Flexas J, Bota J, Galmés J, Medrano H , Ribas-Carbó M. 2006. Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiologia Plantarum 127, 343-352. http://dx.doi.org/10.1111/j.1399-3054.2006.00621.x
Foyer CH, Bloom AJ, Queva G, Noctor G. 2009. Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annual review of plant biology 60, 455-484 http://dx.doi.org/10.1146/annurev.arplant.043008.0 91948
Foyer CH, Lelandais M, Kunert KJ. 1994. Photooxidative stress in plants. Physiologia Plantarum 92(4), 696-717. http://dx.doi.org/10.1111/j.1399-3054
Foyer CH, Noctor G. 2003. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum 119, 355-364. http://dx.doi.org/10.1034/j.1399 3054.2003.00223.x
Foyer CH, Noctor G. 2005a. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell and Environment 28, 1056- 1071. http://dx.doi.org/10.1111/j.1365-3040.2005.01327.x
Foyer CH, Noctor G. 2009. Redox regulation in photosyntheticorganisms : singaling, acclimation, and practical implications. Antioxidants and Redox Singnaling 11, 861-905. http://dx.doi.org/10.1089/ars.2008.2177
Hiner A, Ruiz J, Lopez JN, Arnao MB, Raven EI, Canovas FG, Ascota M. 2002. Kinetic study of the Ascorbate-peroxidase by hydrogen peroxide Biochemical Journal 348, 321-328.
Hippeli S, Heiser I, Elstner EF. 1999. Activated oxygen and free oxygen radicals in pathology: New insights and analogies between animals and plants. Plant Physiology and Biochemistry 37(3), 167-178. http://dx.doi.org/10.1016/S0981-9428(99)80031-X
Ladigues PY. 1975. Some aspect of tissue water relation in three populations of Eucalyptus viminalis Labill. New Phytologist 75, 53-62. http://dx.doi.org/10.1111/j.1469-8137
Loeb LA, Wallace DC, Martin, GM. 2005. The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutations. Proceedings of the National Academy of Sciences 102(52), 18769-18770. http://dx.doi.org/10.1073/pnas.0508886102
Loggni B, Scartazza A, Brugnoli E , Navari-Izzo F.1999. Antioxydative defence system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant physiology 119, 1091-1099.
Manivannan P, Abdullaleel C, Kishocekumar A, Saukar B, Somasundaram R, Sridharam R, Panneersel R. 2007. Changes in antioxidant metabolism of vigna ungui culata (L.). walp by propiconazole under water deficit stress. Colloides and surfaces . Bio interfaces 57, 69-74. http://dx.doi.org/10.1016/j.colsurfb.2007.01.004
Mehler A. 1951. Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Archives of Biochemestry 33(1), 65-77. http://dx.doi.org/10.1016/0003-9861(51)90082-3
Meksem L. 2007. Etude des effets de deux fongicides: Le Flammenco SC et le Tilt 250 EC sur la physiologie, la croissance et le métabolisme énergétique des racines isolées de Triticum durum DESF. PhD, university of Badji Mokhtar, annaba, p. 136-137.
Moller IM. 2001. Plant mitochondria and oxidative stress: Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Species. Annual Review of Plant Physiology and Plant Molecular Biology 52(1), 561-591. http://dx.doi.org/10.1146/annurev.arplant.52.1.561
Moller IM, Sweetlove LJ. 2010. ROS signaling-specificity is required. Trends in plant science 15, 370-374. http://dx.doi.org/10.1093/aobpla/pls014
Monneveux P, This D. 1997. La génétique face au problème de la tolérance des plantes cultivées à la sécheresse : espoirs et difficultés. Science et changements planétaires / Sécheresse 1, 29-37.
Noctor G, De Paepe R, Foyer CH. 2007. Mitochondrial redox biology and homeostasis in plants. Trends in plants science 12, 125-134. http://dx.doi.org/10.1016/j.tplants.2007.01.005
Noctor G, Foyer CH. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant physiology and Plant Molecular Biology 49, 249-279. http://dx.doi.org/10.1146/annurev.arplant.49.1.249
Oracz K, El-Maarouf-Bouteau H, Kranner L, Bogatek R, Corbineau F, Bailly C. 2009. The mechanism involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiology 150, 494-505. http://dx.doi.org/10.1104/pp.109.138107
Pfannschmidt T, Brautigam K, Wagner R, Dietzel L, Schroter Y, Steiner S, Nykytenko A. 2009. Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding. Annals of Botany 103, 602-609. http://dx.doi.org/10.1093/aob/mcn081
Price A, Hendry G. 1997. The signification of the tocopherols in stress survival in plant. In: Evans CR, ed. Free Radicals, Oxidant Stress and Drug Action, Richelieu Press, 443-450 p.
Rascio A. 1988. Several mechanisms of water stress adaptation in durum wheat Gen. Agraria 42, 90.
Rhoads DM, Umbach AL, Subbaiah CC , Siedow JN. 2006. Mitochondrial Reactive Oxygen Species. Contribution to Oxidative Stress and Interorganellar Signaling. Plant Physiology 141(2), 357-366. http://dx.doi.org/10.1104/pp.106.079129
Schopfer P, Plachy C, Frahry G. 2001. Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellins,and abscisic acid. Plant Physiology. 125, 1591-1602. http://dx.doi.org/10.1104/pp.125.4.1591
Takahashi S, Murata N. 2008. How do environmental stresses accelerate photoinhibition? Plant Science 13, 178-182. http://dx.doi.org/10.1016/j.tplants.2008.01.005
Wormuth D, Heiber I, Shaikali J, Kandlbinder A, Baier M, Dietz KJ. 2007. Redox regulation and antioxidative defence in Arabidopsis leaves viewed from a systems biology perspective. Journal of Biotechnology 129(2), 229-248 http://dx.doi.org/10.1016/j.jbiotec.2006.12
Young TA, Cunningham CC, Bailey SM. 2002. Reactive oxygen species production by the mitochondrial respiratory chain in isolated rat hepatocytes and liver mitochondria: studies using myxothiazol. Archives of Biochemistry and Biophysics 405(1), 65-72. http://dx.doi.org/10.1016/S0003-9861(02)00338-7
Zhang S, Weng J, Pan J, Tu T, Yao S, Xu C. 2003. Study on the photo-generation of superoxide radicals in Photosystem II with EPR spin trapping techniques. Photosynthesis Research 75(1), 41-48. http://dx.doi.org/10.1023/A:1022439009587
Issaad Ghozlène, Djebar Mohammed-Réda, Berrebbah Houria (2013), ROS and redox signaling in the response of stems of wheat durum to abiotic stress; IJB, V3, N10, October, P298-305
https://innspub.net/ros-and-redox-signaling-in-the-response-of-stems-of-wheat-durum-to-abiotic-stress/
Copyright © 2013
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0