Salt stress on solubilization of tricalcium phosphate by rhizobia nodulating horse gram [Macrotylma uniflorum (Lam.) Verdc.]

Paper Details

Research Paper 01/12/2014
Views (482)
current_issue_feature_image
publication_file

Salt stress on solubilization of tricalcium phosphate by rhizobia nodulating horse gram [Macrotylma uniflorum (Lam.) Verdc.]

Prabhavati Edulamudi, Vishnuvardhan Zakkula, Veera Mallaiah Konada
J. Biodiv. & Environ. Sci. 5(6), 179-183, December 2014.
Copyright Statement: Copyright 2014; The Author(s).
License: CC BY-NC 4.0

Abstract

Horse gram [Macrotyloma uniflorum (Lam.) Verdc. = Dolichos biflorus (Linn.)] is an important pulse crop and it is extensively cultivated on light red and gravel soils of peninsular India. It derives its importance from its adaptability to poor and adverse climatic conditions which are unsuitable for other pulse crops. Salt tolerant rhizobia are useful in improving the condition of disturbed and extreme climatic conditions. The rhizobia associated with horse gram were found to be highly salt tolerant and these rhizobia also showed tolerance to other salts like chlorides, sulphates and carbonates of sodium, potassium, manganese, calcium and magnesium. Therefore the present study was undertaken to investigate the influence of salt concentration on phosphate solubilization. Solubilization of tricalcium phosphate by salt tolerant strains of Rhizobium from horse gram was investigated. Out of 32 strains of Rhizobium, six strains were found to be efficient phosphate solubilizers at various salt concentrations. These strains showed maximum phosphate solubilization at 0.2M, 0.4M, and even at 1M salt concentration. These strains can be exploited for phosphate solubilization under salt stress.

Garg N, Mishra MM, Garg KL. 1989. Microbial solubilization of insoluble phosphates In: Frontiers in Applied Microbiology (Mukherji KG, SinghVP & Gard, KL eds) Rastogi & Co.3, 263-271.

Keshava BS, Halepyati AS, Pujari BT, Desai BK. 2007. Yield and economics of horse gram (Macrotyloma uniflorum Lam. Verdc.) as influenced by genotypes, plant densities and phosphorus levels. Karnataka Journal of Agricultural Sciences 20, 589-591.

Krishna raj PU, Sadashivam KU, Khanuja SPS. 1999. Mineral phosphate solubilization defective mutants of Pseudomonas sp. express pleiotropic phenotypes. Current Science 76, 1032-1034.

Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D. 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiology Letters 182, 291-296.

Prabhavati E, Mallaiah KV. 2007. Effect of sodium chloride on colony growth, viability and exopolysaccharide production of Rhizobium strains nodulating Horse gram. Asian Journal of Microbiology, Biotechnology and Environmental Science 9, 649-652.

Prabhavati E, Mallaiah KV. 2008. Effect of salts on Rhizobium strains nodulating Horse gram. Asian Journal of Microbiology, Biotechnology and Environmental Science 10, 813-816.

Somasegaran P, Hoben HJ. 1994. Collecting nodules and isolating rhizobia. Handbook of Rhizobia: Methods in Legume-Rhizobium Technology. New York: Springer, 13.

Subba Rao NS. 1993. Phosphate solubilizing Microorganisms In: Biofertilizers in Agriculture and Forestry (Subba Rao NS ed) Oxford & IBH publishing Co, 129-135.

Sunita Gaind, Gaur AC. 1999. Microbial phosphate solubilization as influenced by sodium chloride. Indian Journal of Experimental Biology 37, 209-210.

Virk DS, Chakraborty M, Ghosh J, Harris D. 2006. Participatory evaluation of horse gram (Macrotyloma uniflorum) varieties and their on-station responses to on-farm seed priming in eastern India. Experimental Agriculture 42, 411-425.

Vincent JM. 1970. A Manual for a Practical study of Root Nodule Bacteria. Blackwell Pub, Oxford.

Weller DM, Cook RJ. 1983. Suppression of take-gall of wheat by seed treatment with fluorescent Pseudomonods. Phytopathology 73, 463-469.

Related Articles

Agroforestry in woody-encroached Sub-Saharan savannas: Transforming ecological challenges into sustainable opportunities

Yao Anicet Gervais Kouamé, Pabo Quévin Oula, Kouamé Fulgence Koffi, Ollo Sib, Adama Bakayoko, Karidia Traoré, J. Biodiv. & Environ. Sci. 27(3), 10-22, September 2025.

Extreme rainfall variability and trends in the district of Ouedeme, municipality of Glazoue (Benin)

Koumassi Dègla Hervé, J. Biodiv. & Environ. Sci. 27(3), 1-9, September 2025.

Heterosis breeding, general and specific combining ability and stability studies in pearl millet: Current trends

Ram Avtar, Krishan Pal, Kavita Rani, Rohit Kumar Tiwari, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 117-124, August 2025.

Combining ability, heterosis and stability for yield and fibre quality traits in cotton: Breeding approaches and future prospects

Rohit Kumar Tiwari, Krishan Pal, R. P. Saharan, Ram Avtar, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 109-116, August 2025.

Bridging the COPD awareness gap in marginalized populations: Findings from a multicentre study in Khalilabad, Sant Kabir Nagar, Uttar Pradesh, India

Anupam Pati Tripathi, Jigyasa Pandey, Sakshi Singh, Smita Pathak, Dinesh Chaudhary, Alfiya Mashii, Farheen Fatima, J. Biodiv. & Environ. Sci. 27(2), 97-108, August 2025.

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.