Welcome to International Network for Natural Sciences | INNSpub

Schiff base fluorescent-on ligand synthesis and its application for selective determination of manganese in water samples

Research Paper | August 1, 2018

| Download 14

Maria Sadia, Jehangir Khan, Robina Naz, Rizwan Khan

Key Words:

J. Bio. Env. Sci.13( 2), 76-89, August 2018


JBES 2018 [Generate Certificate]


Manganese contamination of water is becoming a serious health concern in recent years as even at lower levels of exposure it is toxic for living organisms. Manganese can bind to functionally important domains of biomolecules and thereby inactivates them. Therefore, a simple, sensitive and convenient method based on Schiff base fluorescent turn-on ligand for determination of trace amount of manganese was developed in real water samples. The novel Schiff base fluorescent turn-on ligand of 2-hydroxy-1-naphthaldehyde and 2-methoxybenzhydrazide was synthesized and characterized using X-Ray Diffraction (XRD), Proton nuclear magnetic resonance (1HNMR) and Fourier Transform Infrared Spectroscopic (FTIR) techniques. The ligand shows high selectivity and sensitivity for manganese over other metals studied with 3.8 ×10-6 M limit of detection. Chelation with manganese resulted in maximum enhancement in fluorescence intensity at pH 10 with 2:1 binding ratio of ligand to manganese from Job’s plot analysis and with 4×106 M-1 association constant from Benesi–Hildebrand plot.


Copyright © 2018
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Schiff base fluorescent-on ligand synthesis and its application for selective determination of manganese in water samples

Ahmed M, Abu D, Ibrahim MA. 2015. A review on versatile applications of transition metal complexes incorporating Schiff bases, Journal of Applied Sciences 4, 119-133.

Arpi M, Georgina M, Arabinda M, Nitin C, Samiran M. 2006. Synthesis, structures and fluorescence of nickel, zinc and cadmium complexes with the N,N,O-tridentate Schiff base N-2-pyridylmethylidene-2-hydroxy-phenylamine Polyhedron 25,  1753–1762.

Aschner M, Lukey B, Tremblay A. 2006.  The Manganese Health Research Program (MHRP): Status report and future research needs and directions Neuro Toxicology 27, 733–736. http://dx.doi.org/10.1016/j.neuro.2005.

Castro MI, Méndez-Armenta M. 2008.  Heavy metals: Implications associated to fish consumption Environmental Toxicology and Pharmacology 26. www.dx.doi.org/10.1016/j.etap.2008.06.001263–271.

Charity W, Dikio1, Ikechukwu, Ejidike1, Fanyana M, Mtunzi1, Michael J, Klink, Ezekiel Dikio D. 2017 hydrazide schiff bases of acetylacetonate metal complexes: synthesis, spectroscopic and biological studies international journal of pharmacy and pharmaceutical sciences 12,  0975-1012.

Dayu W, Wei H, Zhihua L, Chunying D, Cheng H, Shuo W,  Dehui W. 2008. Highly Sensitive Multiresponsive Chemosensor for Selective Detection of Hg2+ in Natural Water and Different Monitoring Environments Inorganic Chemistry Communications 47, 7190-7209. http://dx.doi.org/10.1021/ic8004344

Di Z,  Ruyi Z, Min W,  Meimei C,  Xubin W,  Yong Y,  Yufen Z. 2013. A Novel Series Colorimetric and Off–On Fluorescent Chemosensors for Fe3+ Based on Rhodamine B Derivative Journal of Fluorescence  23, 13–19. http://dx.doi.org/10.1007/s10895-012-1118-1

Duruibe  J, Ogwuegbu MO,  Egwurugwu  JN. 2007. Heavy metal pollution and human biotoxic effects International Journal of Physical Sciences  2,112-118.

Ghaedi M, Tavallali H, Shokrollahi A, Zahedi M, Montazerozohori M, Soylak M. 2009. Flame atomic absorption spectrometric determination of zinc, nickel, iron and lead in different matrixes after solid phase extraction on sodium dodecyl sulphate (SDS)-coated alumina as their bis (2-hydroxyacetophenone)-1, 3-propanediimine chelates Journal of Hazardous Materials 166. http://dx.doi.org/10.1016/j.jhazmat.2008.12

Hosseini M, Dehghan S, Ganjali Faridbod F. 2011. Determination of zinc(II) ions in waste water samples by a novel zinc sensor based on a new synthesized Schiff’s base Materials Science and Engineering C 31, 428–433. http://dx.doi.org/10.1016/j.msec.2010.10.020

Janelle C, Wei Z. 2004. Manganese toxicity upon overexposure NMR in Biomedicine 17. 544–553.

Jayaraman D, Jayshreek K, Chebroluprao C. 2014. ability of hydroxynaphthylidene derivatives of hydrazine towards Cu2+ Experimental and computational studies Journal of Chemical Sciences 126, 1135–1141. http://dx.doi.org/10.1007/s12039-014-0648-2

Ji YK, Yun JJ, Yoon JL, Kwan MK, Mi SS, Wonwoo N, Juyoung Y. 2005. A Highly Selective Fluorescent Chemosensor for Pb2+ Journal of the American Chemical Society 127. 10107-10111. http://dx.doi.org/10.1021/ja051075b.

Lina W, Wenwu Q, Weisheng L. 2010.  A sensitive Schiff-base fluorescent indicator for the detection of Zn2+ Inorganic Chemistry Communications 13, 1122–1125. http://dx.doi.org/10.1016/j.inoche.2010.06.021

Mau SR, Rahul B, Siddhartha C, Lara R, Gabriele B, Gurucharan M, Ashutosh G. 2003. Synthesis, characterization and X-ray crystal structure of copper (II) complexes with unsymmetrical tetra dentate Schiff base ligands firstevidence of Cu (II) catalysed rearrangement of  unsymmetrical to symmetrical complex, Polyhedron 22, 617-624. http://dx.doi.org/10.1016/S0277-5387(02)01435-3

Mengyu Z, Wei L, Jinting Z, Ganhong  D, Liming J, Jun L, Zhiquan S. 2014.  A simple and effective fluorescent chemosensor for the cascade recognition of Zn2 and H2PO4 ions in protic media Tetrahedron 70, 1011-1015. http://dx.doi.org/10.1016/j.tet.2013.10.099

Morteza H,  Zahra V, Mohammad RG, Farnoush F, Shiva D, Kamal A, Masoud SN . 2010. Fluorescence “turn-on” chemosensor for the selective detection of zinc ion based on Schiff-base derivative Spectrochimica Acta Part A 75, 978–982.  http://dx.doi.org/10.1016/j.saa.2009.12.016

Nagesh GY, Mruthyunjayaswamy B. 2014. Synthesis, Characterization and Biological Relevance of Some Metal (II) Complexes with Oxygen, Nitrogen and Oxygen (ONO) donor Schiff base Ligand derived from Thiazole and 2-hydroxy-1-naphthaldehyde Jurnal of molecular structure 12, 58- 67. http://dx.doi.org/10.1016/j.molstruc.2014.12.058

Rajesh KS, Madhoolika A. 2005. Biological effects of heavy metals An overview Journal of Environmental Biology 26, 301-313.

Subhra B, Soma S, Marschner C, Baumgartner J, Stuart R,  Batten, David R, Samiran M. 2008. Synthesis, crystal structures and fluorescence properties of two new di- and polynuclear Cd (II) complexes with N2O donor set of a tridentate Schiff base ligand Polyhedron  27, 1193–1200.

Tianzhi Y, Kai Z, Yuling Z, Changhui Y, Hui Z, Long Q, Duowang F, Wenkui D,  Lili C, Yongqing Q. 2008.  Synthesis, crystal structure and photoluminescent properties of an aromatic bridged Schiff base ligand and its zinc complex, Inorganica Chimica Acta 361, 233–240. http://dx.doi.org/10.1016/j.ica.2007.07.012

Tolpygin IE, Mikhailenko NV, Bumber AA, Shepelenko EN, Revinsky UV, Dubonosov AD, Bren VA,  Minkin VI. 2012. 11-R-Dibenzo[b,e] [1,4] diazepin-1-ones, the Chemosensors for Transition Metal Cations Russian Journal of General Chemistry 82, 1243–1249. http://dx.doi.org/10.1134/S1070363212070109

Ya JC, Pei JH, Chin FW, An TW. 2014.  A highly selective fluorescence turn-on and reversible sensor for Al3+ ion Inorganic Chemistry Communications 39, 122–125. http://dx.doi.org/10.1016/j.inoche.2013.11.019

Zhaochao X, Juyoung Y, David R. 2010. Spring Fluorescent chemosensors for Zn2+ Chemical Society Reviews 39, 1996–2006. http://dx.doi.org/10.1039/B916287A

Ziyad AT, Abdulaziz M, Ajlouni K, Al-Hassan A,  Ahmed K, Hijazi A. 2011. Syntheses, characterization, biological activity and fluorescence properties of bis-(salicylaldehyde)-1, 3-propylenediimine Schiff base ligand and its lanthanide complexes Spectrochimica Acta Part A 81, 317–323. http://dx.doi.org/10.1016/j.saa.2011.06.018