Welcome to International Network for Natural Sciences | INNSpub

Paper Details

Research Paper | September 1, 2019

| Download

Screening for antifungal activity of decoction preparation of yellow seahorse (Hippocampus kuda) from Kauswagan, Lanao del Norte, Philippines as used in Traditional Chinese Medicine (TCM) and its implication to conservation

Earth Khent Callo, Sharon Rose Tabugo

Key Words:

Int. J. Biosci.15(3), 371-378, September 2019

DOI: http://dx.doi.org/10.12692/ijb/15.3.371-378


IJB 2019 [Generate Certificate]


Seahorses are charismatic creatures that are highly vulnerable to changing environment, overfishing and habitat destruction. They have been widely used in Traditional Chinese Medicine (TCM). Nowadays, these are good sources in the treatment for various ailments. However, various studies are also done to investigate its potential in order to alleviate pressure on wild populations. One of the seahorse species found in the Philippines particularly in Mindanao is the yellow seahorse (Hippocampus kuda). In TCM, seahorses are usually taken orally using decoction preparation however, the antifungal activity of seahorses (H. kuda) using decoction preparation is not yet known, hence this study. Antifungal activity of various concentrations of the decoction preparation of H. kuda was investigated against two (2) potentially pathogenic fungal strains: Aspergillus niger and Candida tropicalis using the Kirby-Bauer (disc diffusion) method. Results show that there was no formation of any inhibition zone as observed after 24-48 hours based on various decoction concentrations examined. This indicates that the decoction preparation was insufficient to unleash the antifungal property of seahorses (H. kuda). Herewith, the negative results for antifungal activity help alleviate pressure on wild seahorses to conserve its population.


Copyright © 2019
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Screening for antifungal activity of decoction preparation of yellow seahorse (Hippocampus kuda) from Kauswagan, Lanao del Norte, Philippines as used in Traditional Chinese Medicine (TCM) and its implication to conservation

Ann Chai LY, Denning DW, Warn P. 2010. Candida tropicalis in human disease. Critical reviews in microbiology 36, 282-298. https://doi.org/10.3109/1040841X.2010.489.506

Bauer AW, Kirby WMM, Sherris JC, Turck M. 1966. Antibiotic susceptibility testing by a standardized single disk method. American journal of clinical pathology 45, 493-496.

Binh DT, Quyen VDH, Sang TQ, Oanh TT. 2016. Vibriosis in Cultured Seahorse (Hippocampus spp.) in Khanh Hoa Province, Vietnam. International Journal of Innovative Studies in Aquatic Biology and Fisheries 2, 43-50.

Garcia LMB, HilomenGarcia GV. 2009. Grow‐out of juvenile seahorse Hippocampus kuda (Bleeker; Teleostei: Syngnathidae) in illuminated sea cages. Aquaculture research 40, 211-217. https://doi.org/10.1111/j.1365-2109.2008.020.84.x

Giles BG, Ky TS, Do Hoang H, Vincent AC. 2006. The catch and trade of seahorses in Vietnam. In Human Exploitation and Biodiversity Conservation, Springer, Dordrecht 157-173. https://doi.org/10.1007/978-1-4020-52.83-5_10

Harvell CD, Fenical W, Roussis V, Ruesink JL, Griggs CC, Greene CH. 1993. Local and geographical variations in the defensive chemistry of a West Indian gorgonian coral. Marine Ecology Progress Series 93, 165-173.

Hudzicki J. 2009. Kirby-Bauer disk diffusion susceptibility test protocol.

Khattab R, Ali A, El-Nomany B, Temraz T. 2008. Screening for antibacterial and antifungal activities in some selected marine organisms of the Suez Canal and Red Sea. The Egyptian Journal of Experimental Biology, Zoology 4, 223-228.

Kim K, Kim PD, Alker AP, Harvell CD. 2000. Chemical resistance of gorgonian corals against fungal infections. Marine Biology 137, 393-401. https://doi.org/10.1007/s002270000333

Kumaravel K, Ravichandran S, Balasubramanian T, Siva Subramanian K, Bilal AB. 2010. Antimicrobial effect of five seahorse species from the Indian coast. British Journal of Pharmacology and Toxicology 1, 62-66.

 Kumaravel K, Ravichandran S, Balasubramanian T, Sonneschein L. 2012. Seahorses – A source of traditional medicine, Natural Product Research: Formerly Natural Product Letters 26, 2330-2334. https://doi.org/10.1080/14786419.2012.662650.

Ladaniya MS. 2008. Postharvest diseases and their management. In: Citrus Fruit: Biology, Technology and Evaluation, San Diego: Academic Press. 417–449.

Lourie SA, Vincent ACJ, Hall HJ. 1999. Seahorses: An Identification Guide to The World’S Species and Their Conservation. Project Seahorse, London, UK.

Lourie SA, Foster SJ, Cooper EW, Vincent AC. 2004. A guide to the identification of seahorses. Washington DC, USA: Project Seahorse and TRAFFIC North America, 114.

Lourie SA. 2016. Seahorses: a life-size guide to every species. University of Chicago Press.

Perry AL, Lunn KE, Vincent AC. 2010. Fisheries, large‐scale trade, and conservation of seahorses in Malaysia and Thailand. Aquatic Conservation: Marine and Freshwater Ecosystems 20, 464-475. https://doi.org/10.1002/aqc.11.12

Qian ZJ, Kang KH, Kim SK. 2012. Isolation and antioxidant activity evaluation of two new phthalate derivatives from seahorse, Hippocampus kuda Bleeker. Biotechnology and bioprocess engineering 17, 1031-1040. https://doi.org/10.1007/s12257-012-0115-1

Vincent AC, Foster SJ, Koldewey HJ. 2011. Conservation and management of seahorses and other Syngnathidae. Journal of fish biology 78, 1681-1724. https://doi.org/10.1111/j.1095-8649.2011.03.003.x


Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background