Welcome to International Network for Natural Sciences | INNSpub

Screening, identification and antimicrobial activity of mycoparasitic fungus (Aspergillus sp.) from Philippine aglibut sweet tamarind

Research Paper | January 1, 2019

| Download 7

Crisanto A. Miclat, Jr., Rosalie R. Rafael, Jonar Yago, Jacqueline V. Bagunu

Key Words:

Int. J. Biosci.14( 1), 468-475, January 2019

DOI: http://dx.doi.org/10.12692/ijb/14.1.468-475


IJB 2019 [Generate Certificate]


Due to the increasing resistance of pathogenic microorganisms, Aspergillus sp. isolated from Aglibut Sweet Tamarind’s bark of Pampanga State Agricultural University was evaluated for potential mycoparasitism and antimicrobial activity. The micrograph obtained from Scanning Electron Microscopy (SEM) Analysis reveals that Aspergillus sp. is a potential mycoparasite; further, its identity was 99% which was confirmed through 18s rDNA of its ITS1 forward and ITS4 reverse sequences by Polymerase Chain Reaction (PCR) Amplification and Sequencing. Moreover, Thin-layer Chromatography (TLC) was used to identify the bioactive compounds of Aspergillus sp. The chemical groups such as Glycosidic flavonoid, Alkaloid and Anthrones were also present which can express the desired activity. Complete Randomized Design (CRD) was carried out with the following treatments; T1 (suspensions), – control (DMSO) and + control (streptomycin for bacteria: ketoconazole for fungus). Paper-disc Diffusion confirms that the suspensions of Aspergillus sp. have significant antimicrobial potential as shown in the zones of inhibition in S. aureus and S. cerevisiae but with lower activity in E. coli. Thus, Aspergillus sp. is a potential mycoparasite and source of new drugs and drug products.


Copyright © 2019
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Screening, identification and antimicrobial activity of mycoparasitic fungus (Aspergillus sp.) from Philippine aglibut sweet tamarind

Aguinaldo A, Espaso E, Guevara B, Nonato M. 2005. A guidebook to plant screening: phytochemical and biological. Manila, Philippines: Research Center for the Natural Sciences and UST Publishing House.

Alwakeel SS. 2013. Molecular identification of isolated fungi from stored apples in Riyadh, Saudi Arabia. Saudi Journal of Biological Sciences 20, 311-317.

Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA. 2000. Are tropical fungi endophytes hyper diverse? Ecology Letters 3, 267-274.

Aryantha NP, Guest DI. 2006. Mycoparasitic and antagonistic inhibition on (Phytophthora cinnamon) by microbial agents isolated from manure composts. Plant Pathology Journal 5(3), 291-298.

Hu H, Ahn NS, Yang X. 2002. (Ganoderma lucidum) extracts induce cell cycle arrest and apoptosis in MCF-7 human breast cancer cell. International Journal of Cancer 102, 250-253.

Koehn FE, Carter GT. 2005. The evolving role of natural products discovery. Nat. Rev. Drug Discovery 4, 206-220.

Melo IS, Faull JL. 2004. Scanning electron microscopy of conidia of (Trichoderma stromaticum), a biocontrol agent of witches’ broom disease of cocoa. Braz. Journal Microbial 35(4), 330−332.

Morton JF. 1958. The tamarind (Tamarindus indica L.) its food, medicinal and industrial uses. Florida: Florida State Horticultural Society.

Neff SA. 2011. Chemical investigations of secondary metabolites from selected fungi and from peanut seeds challenged by (Aspergillus caelatus). Iowa Research Online p. 1-246.

Newman DJ, Cragg GM. 2007. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod 70, 461-477.

Petrini O. 1991. Fungal endophytes of tree leaves: Microbial Ecology of Leaves. Springer-Verlag, New York, USA p. 179–197.

Sandhu SS, Kumar S, Aharwal RP. 2014. Isolation and identification of endophytic fungi (Ricinus communis L.) and their antibacterial activity. International Journal of Research in Pharmacy and Chemistry 4(3), 611 618.

Sun Z, Sun M, Li S. 2015. Identification of mycoparasitism related genes in (Clonostachys rosea) active against (Sclerotinia sclerotiorum). Scientific Reports p. 1-10.

Yin L, Chen C, Chen H, Zhang J and Weiqin C. 2012. Isolation and identification of endophytic fungi from (Actinidia macrosperma) and investigation of their bioactivities. Research Article p. 8.