Screening of effective antagonists from potato rhizosphere against bacterial wilt pathogen
Paper Details
Screening of effective antagonists from potato rhizosphere against bacterial wilt pathogen
Abstract
Potato is the most consumed vegetable while stands 4thamong food crops after wheat, rice, and maize in terms of production. Bacterial wilt caused by Ralstonia solanacearum is one of the most devastating diseases throughout the world causing substantial losses in potato and in other important crops. This study was embarked to search for biocontrol of pathogen, keeping in view recent reports of disease incidence in major potato growing areas of Pakistan. In this study, several potato growing areas of unjab (Pakistan) were visited to study the bacterial community residing in potato rhizosphere and also screen bacterial antagonists against the virulent strains (Rs9, Rs17 and R43) of R. solanacearum. The results revealed that out of 221 rhizobacterial isolates, Bacillus spp. (101) were dominantly isolated from potato rhizosphere, followed by Pseudomonas spp. (76) and Serratia spp. (44). All these isolates were tested for antagonism using dual culture plate method which showed 11 isolates to be highly antagonistic against either isolate of R. solanacearum. Against Rs9, Rs17, Rs43 and GMI1000 highest zone of inhibition was recorded with B28 (12.3 mm), P11 (10.2 mm), B9 (9.9 mm) and B85 (11.7 mm) respectively. Culture filtrate (CF) of antagonists was also checked against live R. solanacearum cells which also showed inhibition in liquid medium. Antagonistic isolates were tested for plant growth promoting (PGP) traits i.e. indole acetic acid (IAA), siderophore production, P-solubilization, root colonization, and chitinase production. The isolates B28 and B85 were potential isolates possessing antagonistic activity along with several PGP traits.
Adesina MF, Lembke A, Costa R, Speksnijder A, Smalla K. 2007. Screening of bacterial isolates from various European soils for in vitro antagonistic activity towards Rhizoctonia solani and Fusarium oxysporum: site-dependent composition and diversity revealed. Soil Biology and Biochemistry 39, 2818-2828. http://dx.doi.org/10.1016/j.soilbio.2007.06.004
Adhikari TB, Basnyat RC. 1998. Effect of crop rotation and cultivar resistance on bacterial wilt of tomato in Nepal. Canadian Journal of Plant Pathology 20, 283-287. http://dx.doi.org/10.1080/07060669809500394
Ahmed IH, Labuschagne N, Korsten L. 2008. Suppression of Pythium ultimum root rot of sorghum by rhizobacterial isolates from Ethiopia and South Africa. Biological Control 45, 72-84. http://dx.doi.org/10.1016/j.biocontrol.2007.11.004
Almoneafy AA, Kakar KU, Nawaz Z, Li B, Lan YC, Xie GL. 2014. Tomato plant growth promotion and antibacterial related-mechanisms of four rhizobacterial Bacillus strains against Ralstonia solanacearum. Symbiosis 63, 59-70. http://dx.doi:10.1007/s13199-014-0288-9
Antoun H, Kloepper J. 2001. Plant growth-promoting rhizobacteria (PGPR). In: Brenner S, Miller JH, Eds. Encyclopedia of genetics. Academic Press, New York, USA., 1477-1480.
Antoun H, Prévost D. 2006. Ecology of plant growth promoting rhizobacteria. In: Siddiqui Z, Ed. PGPR: Biocontrol and Biofertilization. Springer, Dordrecht, The Netherlands, 1-38.
Atlas RM. 2005. Handbook of Media for environmental microbiology. 2nd edition. CRC Press, Taylor and Francis group, Boca Raton, FL, USA.
Barriuso J, Solano BR, Lucas JA, Lobo AP, Villaraco A, Mañero FJG. 2008. Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). In: Ahmad I, Pichtel J, Hayat S, Eds. Plant-Bacteria Interactions: Strategies and Techniques to Promote Plant Growth. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 1-17.
Begum N, Haque MI, Mukhtar T, Naqvi S, Wang J. 2012. Status of bacterial wilt caused by Ralstonia solanacearum in Pakistan. Pakistan Journal of Phytopathology 24, 11-20.
Dong C, Zeng X, Liu Q. 1999. Biological control of tomato bacterial wilt with avirulent bacteriocinogenic strain of Ralstonia solanacearum. Journal of South China Agricultural University 20, 1-4.
Dunne C, Crowley JJ, Moënne-Loccoz Y, Dowling DN, de Bruijn FJ, O’Gara F. 1997. Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology 143, 3921-3931. http://dx.doi.org/10.1099%2F00221287-143-12-3921
Elphinstone J. 2005. The current bacterial wilt situation: a global overview. In: Allen C, Prior P, Hayward AC, Eds. Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, St. Paul, Minnesota, USA., 9-28.
Fegan M, Prior P. 2005. How complex is the Ralstonia solanacearum species complex. In: Allen C, Prior P, Hayward AC, Eds. Bacterial Wilt: The Disease and the Ralstonia solanacearum species complex. APS Press. St. Paul, Minnesota, USA. 449-461.
Fock I, Collonnier C, Purwito A, Luisetti J, Souvannavong V, Vedel F, Servaes A, Ambroise A, Kodja H, Ducreux G. 2000. Resistance to bacterial wilt in somatic hybrids between Solanum tuberosum and Solanum phureja. Plant Science 160, 165-176. http://dx.doi.org/10.1016/S0168-9452(00)00375-7
Fortnum BA, Martin SB. 1998. Disease management strategies for control of bacterial wilt of tobacco in the southeastern USA. In: Prior P, Allen C, Elphinstone J, Eds. Bacterial wilt disease. Springer Berlin Heidelberg, Germany, 394-402.
Garbeva P, Van Veen J, Van Elsas J. 2003. Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microbial Ecology 45, 302-316. http://dx.doi:10.1007/s00248-002-2034-8
García L, Antonio J, Probanza A, Ramos B, Mañero FJG. 2001. Genetic variability of rhizobacteria from wild populations of four Lupinus species based on PCR‐RAPDs. Journal of Plant Nutrition and Soil Science 164, 1-7. http://dx.doi:10.1002/15222624(200102)164:1<1::AI D-JPLN1>3.0.CO;2-L
Gordon SA, Weber RP. 1951. Colorimetric estimation of indole acetic acid. Plant Physiology 26, 192-195.
Götz M, Gomes NC, Dratwinski A, Costa R, Berg G, Peixoto R, Hagler LM, Smalla K. 2006. Survival of gfp-tagged antagonistic bacteria in the rhizosphere of tomato plants and their effects on the indigenous bacterial community. FEMS Microbiology Ecology 56, 207-218. http://dx.doi.org/10.1111/j.1574-6941.2006.00093.x
Guo JH, Qi HY, Guo YH, Ge HL, Gong LY, Zhang LX, Sun PH. 2004. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biological Control 29, 66-72. http://dx.doi:10.1016/S1049-9644(03)00124-5
Gupta A, Gopal M, Tilak K. 2000. Mechanism of plant growth promotion by rhizobacteria. Indian Journal of Experimental Biology 38, 856-862.
Hameeda B, Harinib G, Rupela OP, Wani SP, Reddy G. 2008. Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiological Research 163, 234-242. http://dx.doi:10.1016/j.micres.2006.05.009
Hiltner L. 1904. Uber neuer Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie unter besondere Berucksichtingung der Gründungüng und Brache. Arbeiten der Deustchen Landwirtschaftsgesellesschaft 98, 59-78.
Hu HQ, Li XS, He H. 2010. Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biological Control 54, 359-365. http://dx.doi:10.1016/j.biocontrol.2010.06.015
Katafiire M, Adipala E, Lemaga B, Olanya M, El-Bedewy R, Ewell P. 2005. Management of bacterial wilt of potato using one-season rotation crops in Southwestern Uganda. In: Allen C, Prior P, Hayward AC, Eds. Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, St. Paul. Minnesota, USA., 197-203.
Khanum SA, Shashikanth S, Umesha S, Kavitha R. 2005. Synthesis and antimicrobial study of novel heterocyclic compounds from hydroxybenzophenones. European Journal of Medicinal Chemistry 40, 1156-1162. http://dx.doi:10.1016/j.ejmech.2005.04.005
King EO, Ward MK, Raney DE. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. The Journal of Laboratory and Clinical Medicine 44, 301-307.
Lemessa F, Zeller W. 2007. Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biological Control 42, 336-344. http://dx.doi:10.1016/j.biocontrol.2007.05.014
Li JH, Wang ET, Chen WF, Chen WX. 2008. Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biology and Biochemistry 40, 238-246. http://dx.doi:10.1016/j.soilbio.2007.08.014
Lin WC, Lu CF, Wu JW, Cheng ML, Lin YM, Yang NS, Black L, Green SK, Wang JF, Cheng CP. 2004. Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Research 13, 567-581. http://dx.doi:10.1007/s11248-004-2375-9
Lin Y, He Z, Rosskopf EN, Conn KL, Powell CA, Lazarovits G. 2010. A nylon membrane bag assay for determination of the effect of chemicals on soilborne plant pathogens in soil. Plant Disease 94, 201-206. http://dx.doi.org/10.1094/PDIS-94-2-0201
Louden BC, Haarmann D, Lynne AM. 2011. Use of blue agar CAS assay for siderophore detection. Journal of Microbiology and Biology Education 12, 51-53. http://dx.doi.org/10.1128/jmbe.v12i1.249
Lynch JM. 1990. Introduction: some consequences of microbial rhizosphere competence for plant and soil. In: Lynch JM, Ed. The rhizosphere. John Wiley & Sons, Ltd, CAB International, Wallingford, UK., p. 1-10.
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15, 473-497. http://dx.doi:10.1111/j.1399-3054.1962.tb08052.x
Nautiyal CS. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters 170, 265-270. http://dx.doi:10.1111/j.1574-6968.1999.tb13383.x
Notz R, Maurhofer M, Keel US, Duffy B, Haas D, Défago G. 2001. Biotic factors affecting expression of the 2,4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology 91, 873-881. http://dx.doi.org/10.1094/PHYTO.2001.91.9.873
Rainey PB. 1999. Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environmental Microbiology 1(3), 243-257. http://dx.doi:10.1046/j.1462-2920.1999.00040.x
Rajkumar M, Lee WH, Lee KJ. 2005. Screening of bacterial antagonists for biological control of Phytophthora blight of pepper. Journal of Basic Microbiology 45, 55-63. http://dx.doi:10.1002/jobm.200410445
Ran LX, Li ZN, Wu GJ, Van Loon LC, Bakker PAHM. 2005. Induction of systemic resistance against bacterial wilt in Eucalyptus urophyllaby fluorescent Pseudomonas spp. European Journal of Plant Pathology 113, 59-70. http://.dx.doi.10.1007/s10658-005-0623-3
Roberts DP, McKenna LF, Lakshman DK, Meyer SLF, Kong H, deSouza JT, Lydon J, Baker CJ, Buyer JS, Chung S. 2007. Suppression of damping-off of cucumber caused by Pythium ultimum with live cells and extracts of Serratia marcescens N4-5. Soil Biology and Biochemistry 39, 2275-2288. http://dx.doi.org/10.1016/j.soilbio.2007.03.029
Schell MA. 2000. Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annual Review of Phytopathology 38, 263-292. http://dx.doi:10.1146/annurev.phyto.38.1.263
Shekhawat GS, Chakrabarti SK, Kishore V, Sunaina V, Gadewar AV. 1993. Possibilities of biological management of potato wilt with strains of Bacillus sp., Bacillus subtilis, Pseudomonas fluorescens and actinomycetes. In: Hartman GL, Hayward AC, Eds. Bacterial Wilt. Proceedings of an international conference held at Kaohsiung, Taiwan, 28-31 October 1992. ACIAR Proceedings No. 45, p. 327-332.
Sinclair JB, Dhingra OD. 1995. Basic plant pathology methods. CRC press, Boca Raton, Florida, USA, 11-45.
Smith EF. 1896. A bacterial disease of the tomato, eggplant, and Irish potato (Bacillus solanacearum n. sp.). USDA, Government Printing Office, Washington, USA.
Steel RG, Torrie JH, Dickey DA. 1997. Principles and procedures of statistics: A biological approach. McGraw-Hill, Columbus, USA.
Tahir MI, Inam-ul-Haq M, Ashfaq M, Abbasi NA. 2014. Surveillance of Ralstonia solanacearum infecting potato crop in Punjab. Pakistan Journal of Phytopathology 26(1), 43-50.
Tariq M, Yasmin S, Hafeez FY. 2010. Biological control of potato black scurf by rhizosphere associated bacteria. Brazilian Journal of Microbiology 41(2), 439-451. http://dx.doi.org/10.1590/S15178382201000020002 6
Wang JF, Lin CH. 2005. Integrated management of tomato bacterial wilt. AVRDC-The world vegetable center, Taiwan, p. 1-14.
Xue QY, Ding GC, Li SM, Yang Y, Lan CZ, Guo JH, Smalla K. 2013. Rhizocompetence and antagonistic activity towards genetically diverse Ralstonia solanacearum strains-an improved strategy for selecting biocontrol agents. Applied Microbiology and Biotechnology 97, 1361-1371. http://dx.doi.org/10.1007/s00253-012-4021-4
Zhang S, Moyne AL, Reddy MS, Kloepper JW. 2002. The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biological Control 25, 288-296. http://dx.doi:10.1016/S1049-9644(02)00108-1
Zhu H, Yao Q. 2004. Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. Journal of Phytopathology 152, 537-542. http://dx.doi:10.1111/j.1439-0434.2004.00892.x
M. Ibrahim Tahir, M. Inam-ul-Haq, M. Ashfaq, Nadeem Akhtar Abbasi, Haris Butt, Hira Ghazal (2016), Screening of effective antagonists from potato rhizosphere against bacterial wilt pathogen; IJB, V8, N2, February, P228-240
https://innspub.net/screening-of-effective-antagonists-from-potato-rhizosphere-against-bacterial-wilt-pathogen/
Copyright © 2016
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0