Screening of PHA (poly hydroxyalkanoate) producing bacteria from diverse sources

Paper Details

Research Paper 01/12/2011
Views (852)
current_issue_feature_image
publication_file

Screening of PHA (poly hydroxyalkanoate) producing bacteria from diverse sources

Nandini Phanse, Amruta Chincholikar, Bhavesh Patel, Pragya Rathore, Priti Vyas1, Mital Patel
Int. J. Biosci. 1(6), 27-32, December 2011.
Copyright Statement: Copyright 2011; The Author(s).
License: CC BY-NC 4.0

Abstract

Synthetic plastics are non-degradable and cause waste disposal problems leading to environmental pollution. Bioplastics (polyhydroxyalkanoates) are considered good substitutes for petroleum derived synthetic plastics because of their similar physical and chemical properties. Main advantage of bioplastics is that they are of biological origin and can get degraded completely to CO2 and water under natural environment by the enzymatic activities of microorganisms. Poly-β-hydroxyalkanoates (PHA) are polyesters of various hydroxyalkanoates, synthesized by numerous bacteria as an intracellular carbon and energy storage compound under limited nutrient conditions and with excess carbon. Poly- β- hydroxy butyrate (PHB) is the best known polyhydroxyalkanoate. Considering the industrial interest of PHA, this work has been undertaken for the screening of PHA producing bacteria from diverse sources. In the present study, an attempt was made to isolate efficient PHB producing bacteria from diverse environmental samples. Different industrial wastes and soil samples were screened for bacteria possessing the ability to accumulate poly hydroxyalkanoate (PHA) granules. About 23 bacterial isolates were found to be promising PHA accumulating bacteria. Screening for PHA producers was performed by using E 2 medium. Accumulation of PHB granules in the organisms was analyzed by Sudan black method.

Arun A, Murrugappan RM, David Ravindran, Veeramanikandan V, Balaji S. 2006. Utilization of various industrial wastes for the production of poly-hydroxy butyrate (PHB) by Alcaligenes eutrophus. African Journal of Biotechnology 5, 1524-1527.

Ayub ND, Pettinari MJ, Ruiz JA, Lopez NJ. 2004. A polyhydrobutyrate –producing Pseudomonas sp. isolated from Antarctic environments with high stress resistance. Current Microbiology, 49, 170-174.

Burdon KL, Stokes JC, Kimbrough CE. 1942a. Studies of the common aerobic spore-forming Bacilli staining for fat with Sudan Black B- stain. Journal of Bacteriology, 43, 717-724.

Full TD, DO Jung, MT Madigan. 2006. Production of poly-β-hydroxyalkanoates from soy molasses oligosaccharides by new, rapidly growing Bacillus species. Letters of Applied Microbiology 43, 377-384.

Hartman TL. 1940. The use of Sudan Black B as a bacterial fat stain. Staining Technology, 15, 23-28.

Holt JG, Krig NR, Sneath Pefer HA, Staley JT, Williams ST. 1994. Bergey’s Manual of Determinative Bacteriology 9th edition, Williams and Wilkins, Baltimore.

Juan ML, Gonzalez LW, Walker GC. 1998. A Novel Screening Method for Isolating Exopolysaccharide deficient Mutants. Applied and Environmental Microbiology 64, 4600-4602.

Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI. 1994. Production of Poly (3hydroxybutyric– co-hydroxyl valeric acid) by fed batch culture of Alcaligens eutrophus with substrate control using on line glucose analyzer. Enzyme Microbial Technology 16, 556-561.

Kitamara S, Doi Y. 2004. Staining method of poly (3- alkanoic acid) producing bacteria by Nile blue. Biotechnological Techniques 8, 345-350.

Lafferty RM, Korsatko B, Korsatko W. 1988. Microbial  production  of  poly-  -hydroxybutyric  acid. Biotechnology Special microbial Processes, 136-176.

Lageveen RG, GW Huisman, H Preusting, P Ketelaar, G Eggink, B Witholt. 1988. Formation of Polyesters by Pseudomonas oleovorans: Effect of Substrates on formation and composition of Poly-(R)-3-Hydroxyalkanoates and Poly-(R)-3-Hydroxyalkenoates. Applied Environmental Microbiology 54, 2924-2932.

Lee  SY.  1996. Bacterial Polyhydroxyalkanoates. Biotechnology and Bioengineering, 49:1-14. Microbiology Review, 103, 131-140.

Madison LL, Huisman GW. 1999. Metabolic engineering of poly(3 hydroxyalkanoates): from DNA to plastic. Microbiology Molecular Biology Reviews. 63, 21–53.

Otari SV, and Ghosh JS. 2009. Production and Characterization of the Polymer Polyhydroxy Butyrate-copolyhydroxy Valerate by Bacillus Megaterium NCIM 2475. Current Research Journal of Biological Sciences 1(2), 23-26.

Page WJ. 1992. Production of Polyhydroxyalkanoates by Azotobacter vinelandii Strain UWD in Beet Molasses Culture. FEMS Microbiological Reviews, 103, 149-158.

Parshad J, Suneja S, Kukeja K, Lakshminarayana K. 2001. Poly hydroxybutyrate production by Azotobacter chroococcum. Foliar Microbiology, 46 (4), 315-320.

Roy B, Banerjee R, Chatterjee S. 2009. Isolation and identification of poly beta hydroxybutyric acid accumulating bacteria of Staphylococcal sp. and characterization of biodegradable polyester. Indian Journal of Experimental Biology, 47: 250-256.

Santhan, A. and Sasidharan. S. 2010. Microbial production of polyhydroxy alkanotes (PHA) from Alcaligens spp. and Pseudomonas oleovorans using different carbon sources. African Journal of Biotechnology, 9 (21), 3144-3150.

Sujatha K, Mahalakshmi A, Snehbagarathai. 2005. A study on accumulation of PHB in native Pseudomonas isolates LDC-5 and LDC-25. Indian Journal of Biotechnology, 4, 216-221.

Yilmaz M, Soran HB, Yavuz. 2005. Determination of poly-β-hydroxybutyrate (PHB) production by some Bacillus spp. World Journal of Microbiology and Biotechnology, 21 (4), 565-566.

Yuksedag ZN, Aslim B, Beyadliti X, Mercan N. 2004. Effect of carbon and nitrogen sources and incubation time on poly-β-hydroxybutyrate (PHB) synthesis by Bacillus subtilis 25 and Bacillus megaterium 12. African Journal of Biotechnology, 3 (1): 63-66.

Related Articles

Medicinal plants sold in Daloa markets: Traditional knowledge and Public health issues

Kouakou Yao Bertin, Kouakou Assoman Serge Alain, Kouame Yao Anicet Gervais, Malan Djah François, Bakayoko Adama, Int. J. Biosci. 27(2), 200-210, August 2025.

Agronomic performance and profitability of coffee wildlings using different soil media mixtures

Maribel L. Fernandez, Ricardo B. Casauay, Ronel A. Collado, Int. J. Biosci. 27(2), 189-199, August 2025.

Implications of aberrant glycosylation on age-related disease progression

Tahmid Ahmad Patwary, Mukramur Rahman, Md. Nafis Fuad Prottoy, Sayad Md. Didarul Alam, Int. J. Biosci. 27(2), 176-188, August 2025.

Design and development of solar powered water sprayer: A green technology innovation

Lorenzo V. Sugod, Int. J. Biosci. 27(2), 159-175, August 2025.

Knowledge, attitudes, practices, and social awareness regarding SARS-CoV-2 infection in the kyrgyz population in the post-pandemic period

Mirza Masroor Ali Beg, Haider Ali, Yahya Nur Ahmed, Yavuz Gunduz, Hafsa Develi, Tilekeeva UM, Int. J. Biosci. 27(2), 151-158, August 2025.

Tumor suppressing ability of myrtenal in DMBA-induced rat mammary cancer: A biochemical and histopathological evaluation

Manoharan Pethanasamy, Shanmugam M. Sivasankaran, Saravanan Surya, Raju Kowsalya, Int. J. Biosci. 27(2), 141-150, August 2025.

Assessing tree diversity in cashew plantations: Environmental and agronomic determinants in buffer zones of Mont Sangbé National Park, western Côte d’Ivoire

Kouamé Christophe Koffi, Kouakou Hilaire Bohoussou, Serge Cherry Piba, Naomie Ouffoue, Sylvestre Gagbe, Alex Beda, Adama Tondossama, Int. J. Biosci. 27(2), 122-133, August 2025.