Search for physiological and anatomical parameters of salt tolerance in beans (Phaseolus vulgaris L.)

Paper Details

Research Paper 01/10/2017
Views (434) Download (17)
current_issue_feature_image
publication_file

Search for physiological and anatomical parameters of salt tolerance in beans (Phaseolus vulgaris L.)

Tahri Miloud, Chadli Rabah, Bouzid Khadidja, Flitti Abdelkarim
Int. J. Biosci.11( 4), 184-197, October 2017.
Certificate: IJB 2017 [Generate Certificate]

Abstract

The mechanisms of tolerance or sensitivity are experimentally investigated on a local variety of Phaseolus vulgaris L. grown under a growing regime of NaCl and CaCl2 salts (control, 100 and 200 meq.gl-1 NaCl + CaCl2), under semi-controlled conditions. Bean (Phaseolus vulgaris L.) appears as a plant more or less sensitive to salt during its growth. The action of salt results in decreased stem and root growth in Phaseolus vulgaris L. The plants cultured in salty medium have morphological characteristics different from those of the controls, because the results obtained show that the growth of the stem and the root are not affected by the nutrient solution (control) by cons to high concentrations of salt (200meq.L-1, NaCl, CaCl2, mixture), the stem shows a marked regression, while the plants treated at the 100meq.L-1 concentrations exhibit stress sensitivity characteristics. The action of salinity is illustrated by a reduction in the length of the stem in the lens (benaceur, 2001) and can result in a stunting of the plant until complete dwarfism (Belkhodjaand Soltani, 1992). When the plants receive saline from NaCl, CaCl2 and the mixture (NaCl, CaCl2) 100meq.L-1, the diameter of xylem vessels is reduced as compared to the diameter of the xylem of the plants sprayed with the nutrient solution. After 40 days of growth, the diameter of xylem vessels decreased sharply after just one day of stress, this diameter slowly decreased in plants treated with 100 and 200meq.L-1NaCl, CaCl2 and (NaCl + CaCl2). At the level of the stems, the results clearly show the action of the salt on the conductive tissue compared to the control, results in an increase in the number of the xylem vessel and the writing of its diameter. The diameter of the vessels of the root xylem and compared with that of the stems and much more affected by the action of the salt since it shows a strong reduction compared to the vessels of plants watered to the nutrient solution and whatever saline treatment to bring or Adure of exposure. Most of the plants are able to adapt to saline environments. This adaptation is accompanied by morphological, anatomical and biochemical changes (Kylin, 1975;Paljakouf, 1988). The biomass of the aerial part hydroponically grown is more developed and greater compared to culture on substrate. It is advisable in the last 20 years to use the technique of hydroponic cultivation for several economic advantages. Understanding these phenomena will be very useful for better conduct of natural plant communities, as well as for defining the ideal characteristics for plants of agricultural importance

VIEWS 41

Aceve NE, Stolzy LH, Mehuys GR. 1975. Effects of soil osmotic potential produced with tow salt species on plant water potential, growth and grain yield of wheat. Plant and Soil. 42, 619-627. http://doi.org/10.1007/BF00009947

Ashraf M. 1994. Breeding for salinity tolerance in plants, Crit. Rev. Plant Sci. 13, 17–42. http://doi.org/10.1080/07352689409701906

Ashraf M. 2002. Salt tolerance of cotton: some new advances, Crit. Rev. Plant Sci. 21, 1–30. http://doi.org/10.1080/0735260291044160

Baker NR, Rosenqvist E. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. JExp Bot 55, 1607-1621. https://doi.org/10.1093/jxb/erh196

Belkhodja M, Soltani N. 1992. Responses of the bean (Vicia faba L.) to salinity: study of the germination of some lines determinate, Bulletin of the Botanical SocietyFrance. Letters botanical. 139, 4. http://dx.doi.org/10.1080/01811797.1992.10824972

Belkhodja M, Bidai Y. 2004. Réponse des graines d’ Atriplexhalimus L. à la salinité au stade de la germination. Sécheresse, 15(4), 331-335.

Belkhodja M. 1996. Action de la salinité sur les teneurs en proline des organes adultes de trois lignées de fève (Vicia faba) au cours de la leur développement. Acta. Bot. Gallica, 143, 21-28.

Belkhodja M, Soltani N. 1992. responses of the bean (Vicia faba L.) to salinity: study of the germination of some lines determinate, Bulletin of the Botanical Society of France. Letters botanical, 139, 4. http://dx.doi.org/10.1080/01811797.1992.10824972

Ben Taarit M, Msaadaa K, Hosni K, Marzouk B. 2010. Changes in fatty acid and essential oil composition of sage (Salvia officinalis L.) leaves under NaCl stress. Food Chem. 119, 951-956 http://doi.org/10.1016/j.foodchem.2009.07.055

Ben Taarit M, Msaadaa K, Hosni K, Hammami M, Kchouk ME, Marzouk A. 2009.Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultivated under salt stress conditions. Ind Crop Prod.30, 333-337. http://doi.org/10.1016/j.indcrop.2009.06.001

Bernstein L, François L, Clark RA. 1974. Interactive effects of salinity and fertlity on yield of grains and vegetables. Agron. J. 66, 412-421.

Bourgou S, Bettaieb I, Saidani M, Marzouk B .2010. Fatty acids, essential oil and phenolics modifications of black cumin fruit under NaCl stress conditions. J Agri FoodChem. 58, 12399-12406. Epub 2011 Jun 16. http://doi.org/0.1002/jsfa.4513.

Brugnoli EO, Björkman. 1992. Growth of cotton under continuous salinity stress: Influence on allocation pattern, stomatal and nonstomatal components of photosynthesis and dissipation of excess light energy. J. Planta. 187, 335-347. http://doi.org/10.1007/BF00195657

Brugnoli EM, Lauteri. 1991. Effect of salinity on stomatal conductance, chlorure de soudium, physiol. Vég. 18, 505-515.

Brun A. 1980. Effects compared to different concentrations of NaCl on germination, growth and composition of some populations of annual alfalfas of Algeria. Thèses doct. 3rd cycle Montpellier.

Chakib A, Labhilili M, Brahmi K, Jlibene M, Nasrallah N, Filali-Maltouf A. 2002.  Water and photosynthetic adaptations of durum and wheat tender salt austress. CR Biol. 325, 1097-1109.

Chadli R, Belkhodja M. 2007.Mineral responses in the bean (Vicia faba L.) to the Stress saline. Department of biology faculty of Science University of Mostaganem Algeria laboratory of Physiology plant Faculty of Sciences University of Oran Algeria.

DeoR, Kanwar JS. 1969.Effect of saline irrigation waters on the growth and chemical composition of wheat. J. Indian. Soc. Soil Sci. 16, 365-370 http://dx.doi.org/10.4067/S071895162016005000031

Dussert S, Chabrillange N, Engelmann F. 2002. Cryopreservation; plant biotechnology: laboratory techniques: Europe media duplication S.A; Edition TEC and DOC France.105-120.

EL Midaoui M, Talouizte A, Benbella M, Berville A. 1999a. Response of sunflower (Helianthus annuuus L.) to nitrogen and potassium deficiency. Helia. 22(30), 139-148. http://doi.org/HYPERLINK “http://doi.org/www.anafide.org/doc/128/8-%20HTE__136__Midaoui.pdf”www.anafide.org/doc/128/8%20HTE__136__Midaoui.pdf

El Midaoui M, Talouizte A, Benbella M, Serieys H, Bervillé A. 1999b. Response of five sunflower genotypes (Helianthus annuus L.) to different concentrations of sodium chloride. Helia. 22 (30), 125-138. www.anafide.org/doc/128/5%20HTE__136__El_Midaoui.pdf

Erdei L, Stuiver GEC, Kupier PJC. 1980. The effect of salinity on lipid composition and on activity of Ca2+ and Mg2+ simulated ATPase in salt-sensitive and salttolerant Plantago Species. Physiol. Plant. 49, 315-319. http://doi.org/10.1111/j.1399-3054.1980.tb02670

Flowers TJ. 2004. Improving crop salt tolerance. JExp Bot. 55, 307-331. https://doi.org/10.1093/jxb/erh003

Greenway H, Munns R. 1980. Mécanismes of salt tolerance in non halophytes. Ann Rev. plant. Physiol. 31, 140-190.

Hepler PK, Wayne RO. 1985.Calcium and plant development. Annu. Rev. Plant Physiol. 36, 397-439.

Hoagland DR, Arnon DI. 1938. The water-culture method for growing plants without soil. Calif. Agric. Exp. Sta. Cir. Vol. 347, 1- 39.

Hoffman GJ, Jobes JA. 1978. Growth and water relations of cereal crops as influenced by salinity and relative humidity. Agron. J. 70, 765-769.

Hubac C, et Guerrier D. 1972.Study of the composition of acids amino of two Carex setifolia Godion, little resistant. Effect of exogenous input. Oecol. Plant. 7(2), 147-155.

Johannes E, Brosnan JM, Sanders D. 1991. Calcium channels and signal transduction in plant cells. Bio Essays. 13, 331-336. http://doi.org/10.1002/bies.950130704

Kylin A, Quatrano RS. 1975.  plants in Saline enveronments. Ecologicol studies. Analysis and Synthesis. 147-167. Springer, Berlin. http://doi.org/10.1007HYPERLINK “http://doi.org/10.1007978-3-642-80929-3″/HYPERLINK “http://doi.org/10.1007978-3-642-80929-3″978-3-642-80929-3

La Haye PA, Epstein E. 1971.Calcium and salt toleration by bean plants. Plant   physiol. 25, 213-218. http://doi.org/10.1111/j.1399-3054.1971.tb01430.x

Laribi B, Bettaieb I, Kouki K, Sahli A, Mougou A, Marzouk B .2009. Water deficit effects on caraway (Carum carvi L.) growth, essential oil and fatty acid composition. Ind Crop Prod. 30, 372-379.

Laribi B, Kouki K, Sahli A, Mougou A, Marzouk B. 2011. Essential oil and fatty acid composition of a Tunisian caraway (Carum carvi L.) seed ecotype cultivated under water deficit. Adv Environ Biol. 5(2), 257-264.

Leblebici Z, Aksoy A, Duman F. 2009. Influence of salinity on the growth and heavymetal accumulation capacity  of Spirodela polyrrhiza  (Lemnaceae). Turk J Biol. 35, 215-220. http://doi.org/10.3906/biy-0906-13

Levigneron A, Lopez F, Vansuyt G, Berthomieu P, Fourcroy P, Casse-Delbart F.  1995. Plant salt stress. Cah Agric. 4, 263-73.

Mansour MM, Salama FZ, Ali M, Abou Hadid AF. 2003. Cell and plant response to NaCL in Zea Mays L. cultivars differing in salt tolerance.Gen .Appl. Plant Physiol. 31(1-2), 29-41.

Mekhaldi A, Belkhodja M. 2006. Effect of salinity on gas exchange in life disk of Vigna radiata L. Wilczek, Egypt. J. Appl. Sc. 21 (4B), 411-418.

Mekhaldi A, Benkhelifa M, et Belkhodja M. 2008. The effect of salinity on gas exchange on different developmental stages of Mung bean (Vigna radiata L. Wilczek), International J. of Botany. 4(3), 269-275.

Mekhaldi A, Belkhodja M. 2013. Physiological and biochemical responses of Mung bean (Vigna radiata L. Wilczek) to salt stress conditions, International Journal for Environment and Water. 2(3), 103-10.

Monneveux P, Et Nemmar M. 1986.Contribution to the study of the drought resistance in wheat (Triticum aestivum L.) and durum wheat (Triticum durum Desf.): study of the accumulation of proline during the development cycle. Agronomy. 6, 583-590.

Munns R . 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25, 239-250. http://dx.doi.org/HYPERLINK “http://doi.org/10.1046/j.0016-8025.2001.00808.x”10.1046/j.00168025.2001.00808.x

Munns R, Cramer GR Ball. 1999. Interactions between rising CO2, soil salinity and plant growth. in Luo Y and Mooney HA. (Eds.), Carbon dioxide and environmental stress, 139-167, Academic Press, London.

Munns R, James RA, Lauchli R. 2006.Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany. (57°), 1025-1043.

Neffati M, Marzouk B. 2009.Roots volatiles and fatty acids of coriander (Coriandrum sativum L.) grown in saline medium. Acta Physiol Plant. 31, 455-461. http://doi.org/HYPERLINK “http://doi.org/10.1007/s11738-008-0253-4″10.1007/s11738-008-0253-4

Neffati M, Sriti J, Hamdaoui G, Kchouk ME, Marzouk B. 2011.Salinity impact on fruit yield, essential oil composition and antioxidant activities of Coriandrum sativum fruit extracts. Food Chem. 124, 221-225

Neffati M, Marzouk B. 2008. Changes in essential oil and fatty acid composition in coriander (Coriandrum sativum L.) leaves under saline conditions. Ind Crop Prod. 28, 137-142.

Parida AK, Das AB. 2005.Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf. 60, 324-349.

Poljakoff. 1975. Plants in Saline Environments Ecologicol studies. Analysis and Synthesis (Poljakoff-Mayber, A. and Gale, J., eds). 15, 147-167. Springer, Berlin. http://doi.org/10.1007HYPERLINK “http://doi.org/10.1007978-3-642-80929-3″/HYPERLINK “http://doi.org/10.1007978-3-642-80929-3″978-3-642-80929-3

Poljakoff-Mayber A. 1988. Morphological and anatomical changes as a response to salinity stress, in Plants in Saline Environments. Ecological Studies Springer, Berlin. Analysis and Synthesis. 15, 97-l17.

Roger NE, Noble CL. 1991. The effect of NaCl on the establishment and growth of Balansa Clover (Trifolium michelianum Savi Var. balansae Boiss.). aust. J. Agric. Res. 42, 847-857.

Roger PratGilles FurelaudJean-Pierre Rubinstein. 2001. Colorations de cellulose et lignine, Planet-Vie. https://planet-vie.ens.fr/article/1347/colorations-cellulose-lignine.

Singh TN, Paleg LG, et Aspinal D. 1973. Stress metabolism. Variations in response to water deficit in the barley plant. Aust. J. Biol. Sci. 26, 65-75.

Szabolcs I. 1994. Soilsand salinization. In: pessarakli, M. (Ed.), Handbook of plant and Crop Stress. Marcel Dekker, New York, 3-11.

Torres   C, Biengham FT. 1973. Salt tolerance of Mexican wheat. Effect of NO3 and NaCl on mineral nutrition, growth and grain production of four wheats. Soil Sci. Soc. Am. Proc. 37, 711-715. http://dx.doi.org/10.1080/01904161003669939

Usue P, Robredo A, Lacuesta M, Mena-Petite A, Mùnoz-Rueda A. 2009. The impact of salt stress on the water status of barley plants is partially mitigated by elevated CO2. J Exp Bot. 66, 463-470. https://doi.org/10.1016/j.envexpbot.2009.03.007

Zaki MF, Abou Hussein SD, Abou El-Maged MM, El-Abagy HMH. 2009. Evaluation of some fennel cultivars under saline irrigation water. Eur J Sci Res. 30, 67-78.

Zaman B, Niazi BH, Athar M, Ahmad M. 2005. Response of wheat plants to Na+and Ca++ on interaction under saline environment. Int.J. of Environ. Sci. and Techno 2, 7-12.