Simulation of sugarbeet growth under different water egimes and nitrogen levels by aqua crop

Paper Details

Research Paper 15/02/2014
Views (587)
current_issue_feature_image
publication_file

Simulation of sugarbeet growth under different water egimes and nitrogen levels by aqua crop

Reza Alishiri, Farzad Paknejad, Fayaz Aghayari
Int. J. Biosci. 4(4), 1-9, February 2014.
Copyright Statement: Copyright 2014; The Author(s).
License: CC BY-NC 4.0

Abstract

Precise crop growth models are important tools in assessment the effects of water deficits on crop yield or productivity and predicting yields to optimize irrigation under limited available water for enhanced sustainability and profitable production. Food and Agricultural Organization (FAO) of United Nations addresses this need by providing a yield response to water simulation model (AquaCrop) with limited complexity. The objectives of this study were to evaluate the AquaCrop model for its ability to simulate sugarbeet (Beta vulgaris L.) performance under full and deficit water conditions and two nitrogen levels in a dry environment in center of Iran. The AquaCrop model was evaluated with experimental data collected during the field experiment conducted in Markazi province. The AquaCrop model was able to accurately simulate crop biomass, root yield and canopy cover, with normalized Root Mean Square Error (RMSE) less than 18% for non-water-stress or mild water stress condition. The most deviation in simulation of root yield was in treatment of highest water stress and low nitrogen level (I9N100). Canopy cover was simulated good enough in almost all of treatment but same trend as root yield observed. The ease of use of the AquaCrop model, the low requirement of input parameters and its sufficient degree of simulation accuracy make it a valuable tool for estimating crop productivity under rainfed conditions, supplementary and deficit irrigation and on-farm water management strategies for improving the efficiency of water use in agriculture.

Allen RG, Pereira LS, Raes D, Smith M.  1998. Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56, Rome.

Andarzian B, Bannayan M, Steduto P, Mazraeh H, Barati ME.  2011. Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management 100, 1-8. http://dx.doi.org/10.1016/j.agwat.2011.08.023

Araya A, Habtub S, Hadguc KM, Kebedea A,  Dejened T. 2010. Test of aqua crop model in simulating biomass and yield of water-deficient and irrigated barley (Hordeum vulgare). Agricultural Water Management  97,  1838-1846. http://dx.doi.org/10.1016/j.agwat.2010.06.021

Bradford KJ, Hsiao TC.  1982.  Physiological responses to moderate water stress. Physiological plant ecology,  263-324.

Boote KJ, Jones JW, Batchelor WD, Nafziger ED, Myers O.  2003. Genetic coefficients in the CROPGRO-Soybean Model: Links to field performance and genomics. Agronomy Journal  95, 32-51. http://dx.doi.org/10.2134/agronj2003.0032

Farahani HJ, Izzi G, Steduto P, Oweis TY. 2009. Parameterization and evaluation of AquaCrop for full and deficit irrigated cotton. Agronomy Journal 101, 469-476. http://dx.doi.org/10.2134/agronj2008.0182s

Garcia-Vila M, Fereres E, Mateos L, Orgaz F, Steduto P.  2009. Deficit irrigation optimization of cotton with AquaCrop. Agronomy Journal  101,  477-487. http://dx.doi.org/10.2134/agronj2008.0179s

Geerts    S, Raes  D, Garcia  M, Miranda R. Cusicanqui JA. 2009. Simulating yield response to water of quinoa (Chenopodium quinoa Willd.) with FAO-AquaCrop. Agronomy Journal  101,  499-508. http://dx.doi.org/10.2134/agronj2008.0137s.

Heng LK, Evett SR, Howell TA, Hsiao TC. 2009. Calibration and testing of FAO AquaCrop model for maize in several locations. Agronomy Journal  101, 488-498. http://dx.doi.org/10.2134/agronj2008.0029xs

Hsiao  TC.  1973. Plant responses to water stress. Annual Review of Plant Physiology 24, 519-570. http://dx.doi.org/10.1146/annurev.pp.24.060173.002511

Hsiao  TC, Bradford KJ.  1983. Physiological consequences of cellular water deficits. In Limitations to Efficient Water Use in Crop Production. Eds. H M Taylor, W R Jordan and T R Sinclair.  227–265  p. ASA Inc., CSA Inc., SSSA Inc., Madison, WI.

Hsiao  TC, Fereres  E,  Acevedo E, Henderson DW. 1976. Water stress and dynamics of growth and yield of crop plants. Water and Plant Life Ecological Studies 19, 281-305.

Hsiao  TC, Heng  LK, Steduto  P, Raes  D, Fereres E. 2009. AquaCrop-Model parameterization and testing for maize. Agronomy Journal  101,  448-459. http://dx.doi.org/10.2134/agronj2008.0218s

Jamieson   PD, Porter  JR, Wilson DR.  1991. A test of computer simulation model ARC-WHEAT1 on wheat crops grown in New Zealand. Field Crops Research 27, 337-350. http://dx.doi.org/10.1016/0378-4290(91)90040-3

Loague K, Green  RE.  1991. Statistical and graphical methods for evaluating solute transport models; overview and application.  Journal of Contaminant Hydrology 7, 51-73. http://dx.doi.org/10.1016/0169-7722(91)90038-3

Loomis RS, Rabbinge R, Ng  E. 1979. Explanatory models in crop physiology. Annual Review of Plant Physiology 30, 339-367. http://dx.doi.org/10.1146/annurev.pp.30.060179.002011

Raes  D, Steduto P, Hsiao TC, Fereres E. 2009. AquaCrop-The FAO crop model for predicting yield response to water: II. Main algorithms and software description Agronomy Journal 101, 438-447. http://dx.doi.org/10.2134/agronj2008.0140s

Raes  D, Steduto P, Hsaio TC, Fereres E. 2011. FAO crop water productivity model to simulate yield response to water (Reference Manual).

Sinclair TR, Seligman NG. 1996. Crop modelingIJB-V4-No4-p1-9: From infancy to maturity Agronomy Journal  88, 698-704. http://dx.doi.org/10.2134/agronj1996.00021962008800050004x

Sinclair  TR, Seligman N.  2000. Criteria for publishing papers on crop modeling. Field Crops Research 68,  165-172. http://dx.doi.org/10.1016/S0378-4290(00)00105-2

Steduto   P, Hsiao TC, Fereres E.  2007. On the conservative behavior of biomass water productivity. Irrigation Science 25, 189-207. http://dx.doi.org/10.1007/s00271-007-0064-1

Steduto  P, Hsiao TC, Raes D,  Fereres E. 2009. AquaCrop-The FAO crop model for predicting yield response to water: I. Concepts and underlying principles. Agronomy Journal 101, 426-437. http://dx.doi.org/10.2134/agronj2008.0139s

Stricevic  R, Cosic  M, Djurovic  N, Pejic  B, Maksimovic L.  2011. Assessment of the FAO AquaCrop model in simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower. Agricultural Water Management 98, 1615-1621. http://dx.doi.org/10.1016/j.agwat.2011.05.011

Todorovic M, Albrizio R, Zivotic L, Abi saab M, Stwckle C.  2009. Assessment of Aqua Crop, Crop Syst and WOFOST models in the simulation of sunflower growth under different water regimes. Agronomy Journal 101, 509-521. http://dx.doi.org/10.2134/agronj2008.0166s

Willmott   CJ, Akleson GS, Davis RE, Feddema JJ, Klink KM. 1985. Statistic for the evaluation and comparison of models.  Journal of Geophysical Research 90, 8995-9005. http://dx.doi.org/10.1029/JC090iC05p08995

Related Articles

Lipid peroxidation and antioxidant status in 2,4,6-octatrienoic acid treated A549 and HCT-116 cancer cells

Shanmugam M. Sivasankaran, Raju Kowsalya, Krishnan Baskaran, Chakravarthy Elanchezhiyan, Int. J. Biosci. 27(1), 291-296, July 2025.

Public health implications of microbial contamination in registered slaughterhouses: A case study from La Union, Philippines

Carlo G. Fernandez, Harlene S. Fernandez, Priscilo P. Fontanilla Jr., Reinalyn D. Austria, Int. J. Biosci. 27(1), 272-290, July 2025.

Heterocyclic pyrazoline’s derivatives exhibiting promising potential antidiabetic activity

Mohd Akil, Farah Siddiqui, Amar Chandra Sharma, Mirza Masroor Ali Beg, Iqbal Azad, Firoz Hassan, Abdul Rahman Khan, Naseem Ahmad, Benjamin Siddiqui, Int. J. Biosci. 27(1), 244-271, July 2025.

Harnessing mangrove ecosystems for CO2 sequestration: Insights from remote sensing and GIS technologies

Anas Bin Firoz, Vaishaly Saranaathan, Swagata Chakraborty, Thoti Damodharam, Munisamy Govindaraju, Int. J. Biosci. 27(1), 225-243, July 2025.

Zootechnical performances of djallonké sheep supplemented with cocoa bean fragments, fruits, and leaves of Cajanus cajan in Côte D’ivoire

Ané François De Paul Atsé, Jacques Yao Datté, Sidiki Sangaré, Alassane Méïté, Int. J. Biosci. 27(1), 213-224, July 2025.

Cultivation and nutritional analysis of Pleurotus sp. from different substrates

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, Int. J. Biosci. 27(1), 204-212, July 2025.

Crinum asiaticum L. bulb extracts as a potential source of novel antimicrobial agents: An in-vitro study

K. Gowthaman, P. Prakash, V. Ambikapathy, S. Babu, A. Panneerselvam, Int. J. Biosci. 27(1), 194-203, July 2025.