State-of-the-art strategies in the development of cyclic peptide functionalized nanostructures for cancer chemotherapy

Paper Details

Review Paper 01/07/2019
Views (291) Download (12)
current_issue_feature_image
publication_file

State-of-the-art strategies in the development of cyclic peptide functionalized nanostructures for cancer chemotherapy

Muhammad Jahangeer, Zahed Mahmood, Sarmad Bashir, Sabahat Gulzar, Shoukat Hussain, Sarmad Ahmad Qamar, Areej Riasat
Int. J. Biosci.15( 1), 518-531, July 2019.
Certificate: IJB 2019 [Generate Certificate]

Abstract

Nanobiotechnology is an emerging field in which nanoscale tools are developed for various functionalized biomedical and industrial applications including the targeted release of therapeutic drug molecules. These nanostructures are preferred as they can precisely attack the target site either actively or passively through metabolic barriers without affecting normal cells/tissues of living body. Cancer is a multifactorial disease which involves tissue malignancy and rapid cellular proliferation, leading towards the failure of normal pathophysiological functioning of tissues. Various types of cancers are being treated by chemotherapy, radiotherapy and debulking surgery (partial and/or complete removal of cancer cells). These methods have some limitations such as cancer resistance due to drug inactivation, apoptosis suppression (cell death inhibition), multi-drug resistance and modification in drug metabolism. Through the development of target specific functionalized particles, nanobiotechnology paved new road for cancer chemotherapy. Self-assembled peptides are less immunogenic and specific to their target site with ability to inhibit process of angiogenesis, hence, can be used for the engineering of functionalized nanostructures for cancer treatment. This review summarizes various cyclic peptides types (cediranib, abraxane, cilengitide, buserelin, cisplatin, cetrorelix, gemcitabine and triptorelin) that are being used for the treatment of various cancer types. Progress in nanotherapeutics will enhance the drug efficacy with tremendously reduced side effects due to cell-specific targeting leading to the better outcome in personalized oncology.

VIEWS 13

Alliger H. 2018. U.S. Patent Application No. 10/105, 389.

Andresen TL, Jensen SS, Jorgensen K. 2005. Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Progress in lipid research 44, 68-97.

Bae Y, Diezi TA, Zhao A, Kwon GS. 2007. Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents. Journal of Controlled Release 122, 324-330.

Barrow M, Taylor A, Nieves DJ, Bogart LK, Mandal P, Collinscm, Murray P. 2015. Tailoring the surface charge of dextran-based polymer coated SPIONs for modulated stem cell uptake and MRI contrast. Biomaterials science 3, 608-616.

Barua S, Mitragotri S. 2014. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano today 9, 223-243.

Batista CAS, Larson RG, Kotov NA. 2015. Nonadditivity of nanoparticle interactions. Science 350, 1242477.

Bolukbas DA. 2017. Development of novel nanoparticle-based therapeutics for treatment of lung cancer (Doctoral dissertation, lmu).

Brave SR, Ratcliffe K, Wilson Z, James NH, Ashton S, Wainwright A, Kendrew J, Dudley P, Broadbent N, Sproat G, Taylor S. 2011. Assessing the activity of cediranib, a VEGFR-2/3 tyrosine kinase inhibitor, against VEGFR-1 and members of the structurally related PDGFR family. Molecular cancer therapeutics 10, 861-873.

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. 2018. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 68, 394-424.

Chinen AB, Guancm, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA. 2015. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chemical reviews 115, 10530-10574.

Cochran JR, Kimura RH, Levin AM. 2018. U.S. Patent Application No. 15/917, 293.

Dasari S, Tchounwou PB. 2014. Cisplatin in cancer therapy: molecular mechanisms of action. European journal of pharmacology 740, 364-378.

Dhar S, Kolishetti N, Lippard SJ, Farokhzad OC. 2011. Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proceedings of the National Academy of Sciences 108, 1850-1855.

Duan J, Mansour HM, Zhang Y, Deng X, Chen Y, Wang J, Zhao J. 2012. Reversion of multidrug resistance by co-encapsulation of doxorubicin and curcumin in chitosan/poly (butyl cyanoacrylate) nanoparticles. International journal of pharmaceutics 426, 193-201.

Eskens FALM, Dumez H, Hoekstra R, Perschl A, Brindley C, Bottcher S, Wynendaele W, Drevs J, Verweij J, Van Oosterom AT. 2003. Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins αvβ3 and αvβ5 in patients with advanced solid tumors. European journal of cancer 39, 917-926.

Fadel TR, Fahmy TM. 2014. Immunotherapy applications of carbon nanotubes: from design to safe applications. Trends in Biotechnology 32, 198-209.

Farris M, Bastianelli C, Rosato E, Brosens I, Benagiano G. 2019. Uterine fibroids: an update on current and emerging medical treatment options. Therapeutics and clinical risk management 15, 157.

Funahashi Y, Sugi NH, Semba T, Yamamoto Y, Hamaoka S, Tsukahara-Tamai N, Ozawa Y, Tsuruoka A, Nara K, Takahashi K, Okabe T. 2002. Sulfonamide derivative, E7820, is a unique angiogenesis inhibitor suppressing an expression of integrin α2 subunit on endothelium. Cancer Research 62, 6116-6123.

Ghosh S. 2019. Cisplatin: The first metal based anticancer drug. Bioorganic chemistry 102925.

Griesinger F, Korol EE, Kayaniyil S, Varol N, Ebner T, Goring SM. 2019. Efficacy and Safety of First-Line Carboplatin-versus Cisplatin-based Chemotherapy for Non-Small Cell Lung Cancer: A Meta-Analysis. Lung Cancer. https://doi.org/10.101

Han G, Martin CT, Rotello VM. 2006. Stability of gold nanoparticle‐bound DNA toward biological, physical, and chemical agents. Chemical biology & drug design 67, 78-82.

Hermeking H, Eick D. 1994. Mediation of c-Myc-induced apoptosis by p53. Science 265, 2091-2093.

Hurwitz SN, Meckes DG. 2019. Extracellular Vesicle Integrins Distinguish Unique Cancers. Proteomes 7, 14.

Hynes RO. 2002. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673-687.

Ivy SP, Liu JF, Lee JM, Matulonis UA, Kohn EC. 2016. Cediranib, a pan-VEGFR inhibitor, and olaparib, a PARP inhibitor, in combination therapy for high grade serous ovarian cancer. Expert opinion on investigational drugs 25, 597-611.

Ji SR, Liu C, Zhang B, Yang F, Xu J, Long J, Yu XJ. 2010. Carbon nanotubes in cancer diagnosis and therapy. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1806, 29-35.

Joo SH. 2012. Cyclic peptides as therapeutic agents and biochemical tools. Biomolecules & therapeutics 20, 19.

Kaneshiro TL, Lu ZR. 2009. Targeted intracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimer-based nanoglobular carrier. Biomaterials 30, 5660-5666.

Khalili P, Arakelian A, Chen G, Plunkett ML, Beck I, Parry GC, Donate F, Shaw DE, Mazar AP, Rabbani SA. 2006. A non–RGD-based integrin binding peptide (ATN-161) blocks breast cancer growth and metastasis in vivo. Molecular cancer therapeutics 5, 2271-2280.

Khan SA, Kanchanapally R, Fan Z, Beqa L, Singh AK, Senapati D, Ray PC. 2012. A gold nanocage–CNT hybrid for targeted imaging and photothermal destruction of cancer cells. Chemical Communications 48, 6711-6713.

Kuang Y, Zhang K, Cao Y, Chen X, Wang K, Liu M, Pei R. 2017. Hydrophobic IR-780 dye encapsulated in cRGD-conjugated solid lipid nanoparticles for NIR imaging-guided photothermal therapy. ACS applied materials & interfaces 9, 12217-12226.

Lammers T, Subr V, Ulbrich K, Peschke P, Huber PE, Hennink WE, Storm G. 2009. Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials 30, 3466-3475.

Lind MJ. 2008. Principles of cytotoxic chemotherapy. Medicine 36, 19-23.

Livney YD, Assaraf YG. 2013. Rationally designed nanovehicles to overcome cancer chemoresistance. Advanced drug delivery reviews 65, 1716-1730.

Lu W, Sun Q, Wan J, She Z, Jiang XG. 2006. Cationic albumin–conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer research 66, 11878-11887.

Malik P, Gulia S, Kakkar R. 2013. Quantum dots for diagnosis of cancers. Advanced Materials Letters 4, 811-822.

Martinelli C, Pucci C, Ciofani G. 2019. Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL bioengineering 3, 011502.

Mas-Moruno C, Rechenmacher F, Kessler H. 2010. Cilengitide: the first anti-angiogenic small molecule drug candidate. Design, synthesis and clinical evaluation. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 10, 753-768.

Matsuki M, Takahashi A, Katou S, Takayanagi A, Takagi Y, Kamata K. 2013. Pathological complete response to gemcitabine and cisplatin chemotherapy for advanced upper tract urothelial carcinoma: a case report. Nihon Hinyokika Gakkai zasshi. The Japanese Journal of Urology 104, 33-37.

Matulonis UA, Berlin S, Ivy P, Tyburski K, Krasner C, Zarwan C, Lee H. 2009. Cediranib, an oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer. Journal of Clinical Oncology 27, 5601.

Mikhail AS, Allen C. 2009. Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels. Journal of Controlled Release 138, 214-223.

Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, Jemal A. 2016. Cancer treatment and survivorship statistics, 2016. CA: a cancer journal for clinicians 66, 271-289.

Moon C, Verschraegen CF, Bevers M, Freedman R, Kudelka AP, Kavanagh JJ. 2000. Use of docetaxel (Taxotere®) in patients with paclitaxel (Taxol®) hypersensitivity. Anti-cancer drugs 11, 565-568.

Otvos Jr L, Wade JD. 2014. Current challenges in peptide-based drug discovery. Frontiers in chemistry 2, 62.

Pantiushenko IV, Rudakovskaya PG, Starovoytova AV, Mikhaylovskaya AA, Abakumov MA, Kaplan MA, Mironov AF. 2015. Development of bacteriochlorophyll a-based near-infrared photosensitizers conjugated to gold nanoparticles for photodynamic therapy of cancer. Biochemistry (Moscow) 80, 752-762.

Parodi A, Miao J, Soond SM, Rudzinska MA, Zamyatnin A. 2019. Albumin Nanovectors in Cancer Therapy and Imaging. Biomolecules 9, 218.

Patel SR, Jenkins RNJ, Papadopolous N, Burgess MA, Plager C, Gutterman J, Benjamin RS. 2001. Pilot study of vitaxin—an angiogenesis inhibitor—in patients with advanced leiomyosarcomas. Cancer: Interdisciplinary International Journal of the American Cancer Society 92, 1347-1348.

Qamar SA, Khalid N, Karim S, Qamar M. 2019. Bioinspired nanocomposites: an emerging concept of functional and ecologically sustainable hybrid materials. Journal of Biodiversity & Environmental Sciences. (In press)

Rani A, Asgher M, Qamar SA, Khalid N. 2019. Nanostructure-mediated delivery of therapeutic drugs. International Journal of Chemical and Biochemical Sciences. (In press)

Ricart A, Liu G, Tolcher A, Schwartz G, Harris J, Stagg R, Rowinsky E, Wilding G. 2004. 166 A phase I dose-escalation study of anti-a5β1 integrin monoclonal antibody (M200) in patients with refractory solid tumors. EJC Supplements 8, 52-53.

Saad SY, Najjar TA, Alashari M. 2004. Role of non‐selective adenosine receptor blockade and phosphodiesterase inhibition in cisplatin‐induced nephrogonadal toxicity in rats. Clinical and experimental pharmacology and physiology 31, 862-867.

Schally AV, Block NL, Rick FG. 2017. Discovery of LHRH and development of LHRH analogs for prostate cancer treatment. The Prostate 77, 1036-1054.

Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, Sasisekharan R. 2005. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436, 568.

Song XR, Cai Z, Zheng Y, He G, Cui FY, Gong DQ, Hou SX, Xiong SJ, Lei XJ, Wei YQ. 2009. Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles. European journal of pharmaceutical sciences 37, 300-305.

Stewart BW, Wild CP. 2015. World cancer report 2014. Lyon: International Agency for Research on Cancer 2014.

Tekade RK, Dutta T, Gajbhiye V, Jain NK. 2009. Exploring dendrimer towards dual drug delivery: pH responsive simultaneous drug-release kinetics. Journal of microencapsulation 26, 287-296.

Trikha M, Zhou Z, Nemeth JA, Chen Q, Sharp C, Emmell E, GilesKomar J, Nakada MT. 2004. CNTO 95, a fully human monoclonal antibody that inhibits αv integrins, has antitumor and antiangiogenic activity in vivo. International journal of cancer 110, 326-335.

Tucker GC. 2006. Integrins: molecular targets in cancer therapy. Current oncology reports 8, 96-103.

Upreti M, Jyoti A, Sethi P. 2013. Tumor microenvironment and nanotherapeutics. Translational cancer research 2, 309.

Wang Y, Gao S, Ye WH, Yoon HS, Yang YY. 2006. Co-delivery of drugs and DNA from cationic core–shell nanoparticles self-assembled from a biodegradable copolymer. Nature materials 5, 791.

Xi G, Hu X, Wu B, Jiang H, Young CY, Pang Y, Yuan H. 2011. Autophagy inhibition promotes paclitaxel-induced apoptosis in cancer cells. Cancer letters 307, 141-148.

Yadav G, Singla A. 2019. Hereditary Endometrial and Ovarian Cancers. In Preventive Oncology for the Gynecologist (pp. 45-55). Springer, Singapore.

You DG, Saravanakumar G, Son S, Han HS, Heo R, Kim K, Park JH. 2014. Dextran sulfate-coated superparamagnetic iron oxide nanoparticles as a contrast agent for atherosclerosis imaging. Carbohydrate polymers. 101, 1225-1233.

Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, Jon S. 2008. Drug‐loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angewandte Chemie International Edition 47, 5362-5365.

Zhang L, RadovicMoreno AF, Alexis F, Gu FX, Basto PA, Bagalkot V, Jon S, Langer RS, Farokhzad OC. 2007. Co‐delivery of hydrophobic and hydrophilic drugs from nanoparticle–aptamer bioconjugates. ChemMedChem: Chemistry Enabling Drug Discovery 2, 1268-1271.

Zhou Y, Chakraborty S, Liu S. 2011. Radiolabeled cyclic RGD peptides as radiotracers for imaging tumors and thrombosis by SPECT. Theranostics 1, 58.

Zhu C, Jung S, Luo S, Meng F, Zhu X, Park TG, Zhong Z. 2010. Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA–PCL–PDMAEMA triblock copolymers. Biomaterials 31, 2408-2416.