Synergistic interactions of senary mixtures of an anionic surfactant and five divalent metals to planktonic and sediment bacteria

Paper Details

Research Paper 08/12/2022
Views (397) Download (38)
current_issue_feature_image
publication_file

Synergistic interactions of senary mixtures of an anionic surfactant and five divalent metals to planktonic and sediment bacteria

Reuben N. Okechi, Edna I. Chukwura, Oluchukwu R. Nwangwu, Nneamaka A. Chiegboka
J. Bio. Env. Sci.21( 6), 146-156, December 2022.
Certificate: JBES 2022 [Generate Certificate]

Abstract

The synergistic toxicities of senary mixtures of an anionic surfactant, Sodium Dodecyl Sulfate (SDS) with five divalent metal ions, Pb2+, Cd2+, Ni2+, Zn2+ and Co2+, to Serratia marcescens (SerEW01) and Acinetobacter seifertii respectively isolated from water and sediments in Otamiri River, Owerri, Imo State, Nigeria were critically analyzed with dehydrogenase activity inhibition as the response. The EC50S observed for the individual toxicants for S. marcescens (Ser EW01) was between 0.046 ± 0.003mm (Zn2+) and 2.329 ± 0.092mm (SDS) and between 0.011 ± 0.00mm (Cd2+) and 2.810 ± 0.140mm (SDS), for A. seifertii. At p < 0.05, the EC50S for individual toxicant were significantly different for each organism. To analyze the senary mixtures effects against the bacteria, fixed ratio mixtures of arbitrary combined ratios (ABCR) and EC50 equi-effect concentration (EECR50) were designed. Logical function was used to describe the dose-response relationships between the individual toxicants and the mixtures. Based on the independent actions (IA) and the concentration addition (CA) models, there was a significant difference between the predicted and experimental toxicities. However, there was an underestimation of the mixture toxicities in both organisms by the predicted models, at high concentration and slight overestimation against A. seiferii at low concentration. Furthermore, CA-model made a better prediction of the mixture toxicities than IA- model at low concentrations, especially in ABCR 2 and 3 mixture ratios for A. seiferii. The Toxic Index (TI) and Model Deviation Ratio (MDR) analyses indicate synergistic interaction of the mixtures against both bacteria. Thus, in natural environment, mixtures of metals and surfactant could potentially harm the aquatic microbial ecosystems.

VIEWS 47

Backhaus  T, Blanck H, Faust M. 2010. Hazard and risk assessment of chemical mixtures under REACH, state of the art, gaps and options for improvement, Swedish Chemicals Inspectorate, Report PM 3/10.

Beard SJ, Hughes MN, Poole RK. 1995. Inhibition of the cytochrome bd-terminated NADH oxidase system in Escherichia coli K-12 by divalent metal cations. FEMS Microbiol Lett, 131(2), 205-210. DOI: 10.1111/j.1574-6968.1995.tb07778.x

Bindu PC, Babu P. 2001. Surfactant-induced lipid peroxidation in a tropical euryhaline teleost Oreochromis mossambicus (Tilapia) adapted to fresh water. Indian Journal of Experimental Biology 39(11), 1118-22.

Bjerregaard P, Andersen O. 2007. Ecotoxicology of metals: sources, transport, and effects in the ecosystem. In: Nordberg G, Fowler B, Nordberg M and Friberg L (Eds.), Handbook on the Toxicology of Metals. Academic Press, Burlington pp. 251-277.

Boillot C, Perrodin Y. 2008. Joint-action ecotoxicity of binary mixtures of glutaraldehyde and surfactants used in hospitals: use of the toxicity index model and isobologram representation. Ecotoxicology and Environ Safety 71, 252-529. https://doi: 10.1016/j.ecoenv.2007.08.010.

Bong CW, Malfatti F, Azam F, Obayashi Y, Suzuki S. 2010. The effect of zinc exposure on the bacteria abundance and proteolytic activity in seawater. Interdisciplinary Studies on Environmental Chemistry-Biological Responses to Contaminants 57-63.

Butler BA, Ranville JF, Ross PE. 2008. Direct versus indirect determination of suspended sediment associated metals in a mining-influenced watershed. Appl Geochem 23, 1218-1231. https://doi.org/ 10.1016/j.apgeochem.2007.11.021.

Chen C, Wang Y, Qian Y, Zhao X, Wang Q. 2015. The synergistic toxicity of the multiple chemical mixtures: Implications for risk assessment in the terrestrial environment. Environ Inter, 77, 95-105. https://doi: 10.1016/j.envint.2015.01.014

Cristani M, Naccari C, Nostro A, Pizzimenti A. 2011. Possible use of Serratia marcescens in toxic metal biosorption (removal). Environ Sci Pol Res 19(1), 161-168. https://doi: 10.1007/s11356-011-0539-8.

Gikas P. 2007. Kinetic responses of activated sludge to individual and joint nickel (Na(II)) and Cobalt (Co(II)): An isobolographic approach. Journal of Hazard Mat 143(1), 246-256. https://doi.org/ 10.1016/j.jhazmat.2006.09.019.

Gikas P. 2008. Single and combined effects of nickel (Ni(II)) and Cobalt (Co(II)) ions on activated sludge and on other aerobic microorganisms: A review. Jornal of Hazard Mat, 159(2), 187-203. https//doi: 10.1016/j.jhazmat.2008.02.048.

Gunkel-Grillo, P, Laporte-Magoni C, Lemestre M, Bazire N. 2014. Toxic chromium release from nickel mining sediments in surface waters, New Caledonia. Environ Chem Lett 12, 511-516. https://doi.org/10.1007/s10311-014-0475-1.

Hashida Y, Inouye K. 2007. Kinetic analysis of the activation –and –inhibition dual effects of cobalt ion on thermolysin activity. Journal of Biochem, 141, 843-853. https://doi: 10.1093/jb/mvm088.

Hrenovic J, Ivankovic I. 2007. Toxicity of anionic and cationic surfactants to acinetobacter junii in pure culture. Cent Euro J of Biol, 2(3), 405-414. https://doi.org/10.2478/s11535-007-0029-7.

Kelly J, Haeggblom M, Tate RL. 2003. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles, Biological Fertil. Soils 38(2), 65-71. https://doi: 10.1007/s00374-003-0642-1

Li MH. 2008. Effects of nonionic and ionic surfactants on survival, oxidative stress, and cholinesterase activity of planarian. Chemosphere 70, 1796-1803.

Liu Y, Vijvermg., Pan B, Peijnenburg WJGM. 2017. Toxicity models of metal mixtures established on the basis of additivity and interactions: A review. Front Environ Sci Eng 11(2), 10-23. https://doi. 10.1007//s11783-017-0916-8.

Magalhaes DP, Marques MR da C, Baptista DF, Buss DF. 2015. Metal bioavailability and toxicity in freshwaters: Review. Environ Chem Lett. 13(1), https://doi: 10.1007/s10311-015-0491-9.

Mariani L, De Pascale D, Faraponova O, Tornambe A, Sarni A, Giuliani S, Ruggiero G, Onorati F, Magaletti E. 2006. The use of a test battery in marine ecotoxicology: the acute toxicity of sodium dodecil sulfate. Environ Toxicol 21, 373-379.

Masakorala K, Turner A, Brown M. 2008. Influence of synthetic surfactants on the uptake of Pd, Cd and Pb by the marine macroalga, Ulva lactuca. Environ Poll 156, 897-904. https//doi: 10.1016/j. envpol.2008.05.030.

Masakorala K, Turner A, Brown M. 2011. Toxicity of synthetic surfactants to the marine macroalga, Ulva lactuca. Water Air Soil Pol 218, 283-291.

Nickerson KW, Aspedon A. 1992. Detergent-shock response in enteric bacteria. Molecul Microbiol 6(8), 957-61. https://doi: 10.1111/j.1365-2958.1992.tb02161.x.

Nwagwu EC, Yilwa VM, Egbe NE, Onwumere GB. 2017. Isolation and characterization of heavy metal tolerant bacteria from Panteka stream, Kaduna, Nigeria and potential for bioremediation. African Journal of Biotechnology 16(1), 32-40.

Nweke CO, Alisi CS, Okolo JC, Nwanyanwu CE. 2007. Toxicity of zinc to heterotrophic bacteria from a tropical river sediment. App Ecol and Environ Res 5(1), 123-132.

Nweke CO, Nwachukwu IN, Opurum CC, Aguh MN. 2020. Toxicities of senary and septnary mixtures of five metals and two phenols to Pseudomonas fluorescens. Int. Res Journal Biol Sci 9(2), 19-31.

Nweke CO, Okolo JC, Nwanyanwu CE, Alisi CS. 2006. Response of planktonic bacteria of new calabar river to zinc stress. African Journal of Biotechnology 5(8), 653-658.

Nweke CO, Orji JC. 2009. Toxicity of heavy metals to microbial community of New Calabar River. Nig J of Biochem and Mole Bio. 24(1), 48-54.

Nweke CO, Umeh SI, Ohale VK. 2018. Toxicity of four metals and their mixtures to pseudomonas fluorescens: an assessment using fixed ratio design. Ecotox Environ Cont 13(1), 1-14.

Nystrand MI, Osterholm P, Nyberg ME, Gustafsson JP. 2012. Metals speciation in rivers affected by enhanced soil erosion and acidity. Appl Geochem 27(2012), 906-916.

Okechi RN, Chukwra EI. 2020. Physicochemical and bacteriological qualities of Otamiri river water and sediment in south eastern Nigeria. Front Environ Microbiol 6(2), 18-26.

Okechi RN, Chukwura EI, Nweke CO. 2020. Invitro interactive toxicities of quaternary and quinary mixtures of SDS and metal ions to Serretia marcescens (SerEW01). J. Microbiol. Res.,10(3), 59-70.

Okechi RN, Chukwura EI, Nweke CO. 2021a. Assessing the toxicities of the binary mixtures of sodium dodecylsulfate and heavy metals to Serretia marcescens (SerEW01) from Otamiri river. Ecotoxicol. Environ. Contam., 16(1), 45-50. doi: 10.5132/eec.2021.01.06

Okechi RN, Chukwura EI, Nweke CO. 2021b. Inhibitory effects of ternary mixtures sodium dodecyl sulfate and heavy metals to Acinetobacter seifertii from Otamiri River sediment, in Southeastern Nigeria. Ecotoxicol. Environ. Contam., 16(1), 1-11.

Singermm, Tjeerdema RS. 1993. Fate and effects of the surfactant sodium dodecylsulfate. Rev Environ Cont Toxicol 133, 95-149.

Sirisattha S, Momose Y, Kitagawa E, Iwahashi H. 2004. Toxicity of anionic detergents determined by Saccharomyces cerevisiae microarray analysis. Water Res 38(2004), 61-70.

Swedmark M, Granmo A. 1981. Effects of mixtures of heavy metals and a surfactant on the development of cod (Gadus morhual L). Rapports et Procès-Verbaux Desreunions- International Council for the Exploration of the Sea 178, 95-103.

USEPA. 2007. Sediment toxicity identification evaluation (TIE) phases I, II, III. Guidance document, US EPA, Washington DC.

Verslycke T, Vangheluwe M, Heijerick D, de Schamphelaere K, van Sprang P, Janssen CR. 2003. The toxicity of metal mixtures to the estuarine mysid Neomysis integer (Crustacea: Mysidacea) under changing salinity. Aqua Toxicol 64, 307-315.

Vignati DA, Loizeau JL, Rossé P, Dominik J. 2006. Comparative performance of membrane filters vs. high-surface area filtration cartridges for the determination of element concentrations in freshwater systems. Water Res 40, 917-924.

Zeb B, Ping Z, Mahmood Q, Lin Q, Pervez A, Irshad M, Bilal M, Bhatti ZA, Shaheen S. 2016. Assessment of combined toxicity of heavy metals from industrial wastewaters on Photobacterium phosphoreum T3S, Appl Water Sci 1-8.