Synthesis, characterization of silicate intercalated and evaluation of their antimicrobial activity
Paper Details
Synthesis, characterization of silicate intercalated and evaluation of their antimicrobial activity
Abstract
This study focuses on the development of antimicrobial polysilicate to clean water from pathogenic bacteria. A new silicate intercalated synthetic antibacterial is described. The layered sodium silicate kanemite was synthesized under hydrothermal conditions. The kanemite obtained is intercalated by organic molecules (alkyltrimethylammonium. The products obtained are characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The antibacterial activity of the materials obtained is evaluated by measuring the minimum inhibitory concentration (MIC) by exposing them to the two bacteria strains, i.e. Escherichia coli and Staphylococcus aureus, at different concentrations. The C16TMA-kanemite demonstrates very high antimicrobial activity against the two microorganisms tested as well as the material use in water treatment. Indeed, it exhibits a minimum inhibitory concentration of 0.05g per 5ml of physiological water during 15 minutes.
Beneke K, Lagaly G. 1977. Structural investigations of layered silicates by vibrational spectroscopy,American Mineralogist 762-763.
Boukraa L, Benbarek H, Moussa A. 2008. Synergistic action of starch honey against Candida albicans correlation with diastase number. Brazilian Journal of Microbiology 39(1), 40–43. https://doi.org/10.1590/S1517838220080001000010
Gaudy C, Buxeraud J. 2005. Antibiotiques; pharmacologie et thérapeutique .Publié par Elsevier Masson.
Hamadi F, Latrache H, Mliji E, mallouki B. 2009. Adéhésion de staphylococus aureus au verre et au teflon, Revue de microbiology industrially, sanitaire, et environmental 3(1), 1-16.
Heinrich Thiesen P, Beneke K, Lagaly G. 2002. Silylation of a crystalline silicic acid: an MAS NMR and porosity study. Journal of Materials Chemistry 12, 3010–3015. https://doi.org/10.1039/B204314A
Herrera P, Burghardt RC, Phillips TD. 2000. Adsorption of Salmonella enteritidis by cetyl peridinium exchanged montmorillonite clays. Veterinary. Microbiology 74(3), 259-272 . https://doi.org/10.1016/S0378-1135(00)00157-7
Jean P. 1993. bacteries et environnement adaptation physiologique, presses universitaires de Grenoble.
Johan Z, Maglione GF. 1972. La kanemite, nouveau silicate de sodium hydrate ´ de ne oformation, Bulletin de la Société française de Minéralogie et de Cristallographie 95, 371–382.
Kimura T, Itoh D, Okazaki N, Kaneda M, Sakamoto Y,Terasaki O, Sugahara Y, Kuroda K. 2000. Lamellar hexadecyltrimethylammonium silicates derived from kanemite, Langmuir 16(20), 7624-7628. https://doi.org/10.1021/la000325t
Ma YL, Xu ZR, Guo T, You P. 2004. Adsorption of methylene blue on Cu(II)-exchanged montmorillonite, Journal of Colloid and Interface Science 280(2), 283–288. https://doi.org/10.1016/j.jcis.2004.08.044
Ogawa M, Maeda N. 1998. Intercalation of tris (2, 2 – bipyridine) ruthenium (II) into magadiite, Clay Minerals 33(4), 643–650.
Ogawa M, Takizawa Y. 1999. Intercalation of tris (2, 2 -bipyridine) ruthenium (II) into a layered silicate, magadiite, with the aid of a crown ether, Journal of Physical Chemistry B, 103(24), 5005–5009. https://doi.org/10.1021/jp984198
Okutomo S, Kuroda K, Ogawa M. 1999. Preparation and characterization of silylated magadiites, Applied Clay Science 15(1-2), 253–264. https://doi.org/10.1016/S0169-1317(99)00010-1.
Ren Z, Zhang F, Yue L, Li X, Tao Y, Zhang G, Wu K, Wang C, Li B. 2015. Nickel nanoparticles highly dispersed in silica pillared clay as an efficient catalyst for chlorobenzene dichlorination, RSC Advances 5, 52658-52666. https://doi.org/10.1039/C5RA05926G
Rojo JM, Ruiz Hitzky E, Sanz J. 1988. Proton-sodium exchange in magadiite: spectroscopic study (NMR, IR) of the evolution of interlayer OH groups. Inorganic Chemistry 27(16), 2785-2790. https://doi.org/10.1021/ic00289a009
Ruiz Hitzky E, Aranda P, Darder M, Ogawa M. 2011. Hybrid and biohybrid silicate based materials:molecular vs. block-assembling bottom-up processes.Chemical Society Reviews 40, 801–828. https://doi.org/10.1039/C0CS00052C
Wang Q, Zhang Y, Zheng J, Wang Y, Hu T, Meng C. 2017. Metal oxide decorated layered silicate magadiite for enhanced properties: insight from ZnO and CuO decoration, Dalton Trans 46, 4303–4316. https://doi.org/10.1039/C7DT00228A
Wang Q, Zhang Y, Zheng J, Hu T, Meng C. 2017. Synthesis, structure, optical and magnetic properties of interlamellar decoration of magadiite using vanadium oxide species. Microporous and Mesoporous Materials 244, 264–277. https://doi.org/10.1016/j.micromeso.2016.10.046
Yamada Z, Ohta K, Takeuchi S, Suzuki K, Mori T. 1991. Preparation and properties of antibacterial clay interlayer compound. Kagaku Kogaku Ronbunshu 17, 29-34.
Sahli Fatima Zohra, Sassi Mohamed, Labbaci Abdallah, Hocine Laredj (2020), Synthesis, characterization of silicate intercalated and evaluation of their antimicrobial activity; IJB, V16, N2, February, P373-381
https://innspub.net/synthesis-characterization-of-silicate-intercalated-and-evaluation-of-their-antimicrobial-activity/
Copyright © 2020
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0