Synthesis, characterization of silicate intercalated and evaluation of their antimicrobial activity

Paper Details

Research Paper 01/02/2020
Views (390) Download (26)
current_issue_feature_image
publication_file

Synthesis, characterization of silicate intercalated and evaluation of their antimicrobial activity

Sahli Fatima Zohra, Sassi Mohamed, Labbaci Abdallah, Hocine Laredj
Int. J. Biosci.16( 2), 373-381, February 2020.
Certificate: IJB 2020 [Generate Certificate]

Abstract

This study focuses on the development of antimicrobial polysilicate to clean water from pathogenic bacteria. A new silicate intercalated synthetic antibacterial is described. The layered sodium silicate kanemite was synthesized under hydrothermal conditions. The kanemite obtained is intercalated by organic molecules (alkyltrimethylammonium. The products obtained are characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The antibacterial activity of the materials obtained is evaluated by measuring the minimum inhibitory concentration (MIC) by exposing them to the two bacteria strains, i.e. Escherichia coli and Staphylococcus aureus, at different concentrations. The C16TMA-kanemite demonstrates very high antimicrobial activity against the two microorganisms tested as well as the material use in water treatment. Indeed, it exhibits a minimum inhibitory concentration of 0.05g per 5ml of physiological water during 15 minutes.

VIEWS 22

Beneke K, Lagaly G. 1977. Structural investigations of layered silicates by vibrational     spectroscopy,American Mineralogist 762-763.

Boukraa  L, Benbarek  H, Moussa A. 2008. Synergistic action of starch honey against Candida albicans correlation with  diastase number. Brazilian Journal of Microbiology 39(1), 40–43. https://doi.org/10.1590/S1517838220080001000010

Gaudy  C, Buxeraud J. 2005. Antibiotiques; pharmacologie et thérapeutique .Publié par Elsevier   Masson.

Hamadi F, Latrache H, Mliji  E,  mallouki  B. 2009. Adéhésion de   staphylococus aureus au verre et au teflon, Revue de microbiology industrially, sanitaire, et environmental 3(1), 1-16.

Heinrich Thiesen P, Beneke K, Lagaly G. 2002. Silylation of a crystalline silicic acid: an MAS NMR and porosity study. Journal of Materials Chemistry 12, 3010–3015. https://doi.org/10.1039/B204314A

Herrera P, Burghardt RC, Phillips TD. 2000. Adsorption of Salmonella enteritidis by cetyl peridinium exchanged montmorillonite clays. Veterinary. Microbiology 74(3), 259-272 . https://doi.org/10.1016/S0378-1135(00)00157-7

Jean  P. 1993. bacteries et environnement adaptation physiologique, presses universitaires de Grenoble.

Johan  Z,  Maglione  GF. 1972. La kanemite, nouveau silicate de sodium hydrate ´ de ne oformation, Bulletin de la Société française de Minéralogie et de Cristallographie 95, 371–382.

Kimura T, Itoh D, Okazaki N, Kaneda M, Sakamoto Y,Terasaki  O,  Sugahara Y, Kuroda  K. 2000. Lamellar hexadecyltrimethylammonium silicates derived from kanemite, Langmuir 16(20), 7624-7628. https://doi.org/10.1021/la000325t

Ma YL, Xu ZR, Guo T, You P. 2004. Adsorption of methylene blue on Cu(II)-exchanged montmorillonite, Journal of Colloid and Interface Science 280(2), 283–288. https://doi.org/10.1016/j.jcis.2004.08.044

Ogawa M, Maeda N. 1998. Intercalation of tris (2, 2 – bipyridine) ruthenium (II) into magadiite, Clay Minerals 33(4), 643–650.

Ogawa M, Takizawa Y. 1999. Intercalation of tris (2, 2 -bipyridine) ruthenium (II) into a layered silicate, magadiite, with the aid of a crown ether, Journal of Physical Chemistry B, 103(24), 5005–5009. https://doi.org/10.1021/jp984198

Okutomo S, Kuroda K, Ogawa M. 1999.  Preparation and characterization of silylated magadiites, Applied Clay Science 15(1-2), 253–264. https://doi.org/10.1016/S0169-1317(99)00010-1.

Ren Z, Zhang F, Yue L, Li X, Tao Y, Zhang G, Wu K, Wang C, Li B. 2015. Nickel nanoparticles highly dispersed in silica pillared clay as an efficient catalyst for chlorobenzene dichlorination, RSC Advances 5, 52658-52666. https://doi.org/10.1039/C5RA05926G

Rojo JM, Ruiz Hitzky  E, Sanz J. 1988. Proton-sodium exchange in magadiite: spectroscopic study (NMR, IR) of the evolution of interlayer OH groups. Inorganic Chemistry 27(16), 2785-2790. https://doi.org/10.1021/ic00289a009

Ruiz Hitzky E,  Aranda P, Darder M, Ogawa M. 2011. Hybrid and biohybrid silicate based materials:molecular vs. block-assembling bottom-up processes.Chemical Society Reviews 40, 801–828. https://doi.org/10.1039/C0CS00052C

Wang  Q, Zhang Y, Zheng J, Wang Y, Hu T, Meng C. 2017.  Metal oxide decorated layered silicate magadiite for enhanced properties: insight from ZnO and CuO decoration, Dalton Trans 46, 4303–4316. https://doi.org/10.1039/C7DT00228A

Wang Q, Zhang Y, Zheng J,  Hu T, Meng C. 2017. Synthesis, structure, optical and magnetic properties of interlamellar decoration of magadiite using vanadium oxide species. Microporous and Mesoporous Materials 244, 264277. https://doi.org/10.1016/j.micromeso.2016.10.046

Yamada Z,  Ohta K, Takeuchi S, Suzuki K,  Mori T. 1991.  Preparation and   properties of antibacterial clay interlayer compound. Kagaku Kogaku Ronbunshu 17, 29-34.