Welcome to International Network for Natural Sciences | INNSpub

Paper Details

Review Paper | May 1, 2018

| Download

Targeted pinpoint gene editing tool, CRISPR/Cas9: A Review

Hafsa Tahir, Rashid Saif, Talha Tamseel, Fraz Ahmad

Key Words:

Int. J. Biosci.12(5), 99-115, May 2018

DOI: http://dx.doi.org/10.12692/ijb/12.5.99-115


IJB 2018 [Generate Certificate]


CRISPR has emanated as a powerful tool for targeted, precision genome editing and is extensively captivating biomedical research world nowadays. Being more precise, faster and cheaper than predecessor DNA editing strategies like ZFN (Zinc Finger Nucleases) and TALENs (Transcription activator-like effector nucleases), the horizon of its potential application has been extremely widened. In this technique, bacterial machinery is being used to study and treat various human diseases, having gene-based etiology, β Thalassemia, spinal muscular dystrophy, cystic fibrosis and microcephaly. Additionally, CRISPR/Cas9 has also been applied in studying immune diseases e.g. AIDS. Moreover, its use in enhancing genetic code of crops and livestock with large-scale production of biomedical materials, is also gaining much glamor. Unlike somatic cells, the use of CRISPR/Cas9 in gene manipulation of germline cells is controversial. Due to anticipated and existing ethical ramifications, it would probably take a few more years to routinely use CRISPR/Cas9 in humans. This review has been done to explore different aspects of CRISPR/Cas9, including its current and future implications.


Copyright © 2018
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Targeted pinpoint gene editing tool, CRISPR/Cas9: A Review

Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, Church G, Corn JE, Daley GQ, Doudna JA, Fenner M. 2015. Biotechnology. A prudent path forward for genomic engineering and germline genemodification. Science 348, 36-38. http://dx.doi.org/10.1126/science.aab1028

Beaud Meng L. 2016. Gene-targeting pharmaceuticals for single-gene disorders. Human Molecular Genetics 25, R18-26. http://dx.doi.org/10.1093/hmg/ddv476

Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551-2561. http://dx.doi.org/10.1099/mic.0.28048-0

Brown KV. 2017. The FDA Is Cracking Down On Rogue Genetic Engineers.

Cai L, Fisher AL, Huang H, Xie Z. 2016. CRISPR-mediated genome editing and human diseases. Genes & Diseases 3, 244-251. http://dx.doi.org/10.1016/j.gendis.2016.07.003

Callaway E. 2016. UK scientists gain licence to edit genes in human embryos. Nature 530, p. 18, England. http://dx.doi.org/10.1038/nature.2016.19270

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science339, 819-823. http://dx.doi.org/10.1126/science.1231143

Cox DBT, Platt RJ, Zhang F. 2015. Therapeutic genome editing: prospects and challenges. Nature Medicine21, 121-131. http://dx.doi.org/10.1038/nm.3793

Cyranoski D. 2017. China’s embrace of embryo selection raises thorny questions. Nature 548, 272-274. http://dx.doi.org 10.1038/548272a

DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. 2013. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research 41, 4336-4343. http://dx.doi.org/10.1093/nar/gkt135

Friedland AE, Tzur YB, Esvelt KM, Colaiácovo MP, Church GM, Calarco JA. 2013. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nature Methods 10, 741-743. http://dx.doi.org/10.1038/nmeth.2532

Fung RK, Kerridge IH. 2016. Gene editing advance re-ignites debate on the merits and risks of animal to human transplantation. International Medicine Journal 46, 1017-1022. http://dx.doi.org/10.1111/imj.13183

Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O’Connor Giles KM. 2013. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194, 1029-1035. http://dx.doi.org/10.1534/genetics.113.152710

Guide AC. 2018. Addgene: CRISPR Guide.

Guo X, Li XJ. 2015. Targeted genome editing in primate embryos. Cell Research 25, 767-768. http://dx.doi.org/10.1038/cr.2015.64

Hammond AM, Kyrou K, Bruttini M, North A, Galizi R, Karlsson X, Kranjc N, Carpi FM, D’Aurizio R, Crisanti A. 2017. The creation and selection of mutations resistant to a gene drive over multiplegenerations in the malaria mosquito. PLOS Genetics 13, e1007039. http://dx.doi.org/10.1371/journal.pgen.1007039

Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB. 2015. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primarycells. Nature Biotechnology 33, 985-989. http://dx.doi.org/10.1038/nbt.3290

Hille F, Charpentier E. 2016. CRISPR-Cas: biology, mechanisms and relevance. Philos Trans R Soc Lond B. International Journal of Biological Sciences 371, 20150496 http://dx.doi.org/10.1098/rstb.2015.0496

Horvath P, Barrangou R. 2010. CRISPR/Cas, the immune system of bacteria and archaea. Science  327, 167-170. http://dx.doi.org/10.1126/science.1179555

Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology 31, 227-229. http://dx.doi.org/10.1038/nbt.2501

Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP. 2013. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research 41, e188. http://dx.doi.org/10.1093/nar/gkt780

June A. 2011. SimpleCRISPR.jpg (JPEG Image, 1195 × 350 pixels) – Scaled (96%).

Kaminski R, Bella R, Yin C, Otte J, Ferrante P, Gendelman HE, Li H, Booze R, Gordon J, Hu W et al. 2016. Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Therapy23, 690-695. http://dx.doi.org/10.1038/gt.2016.41

Ledford H. 2015. CRISPR, the disruptor. Nature 522, 20-24. http://dx.doi.org/10.1038/522020a

Li D, Lv L, Chen JC, Chen GQ. 2017. Controlling microbial PHB synthesis via CRISPRi. Applied Microbiology and Biotechnology 101, 5861-5867. http://dx.doi.org/

Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y. 2015. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & cell 6, 363-372. http://dx.doi.org/10.1007/s13238-015-0153-5

Liu JJ, Kong II, Zhang GC, Jayakody LN, Kim H, Xia PF, Kwak S, Sung BH, Sohn JH, Walukiewicz HE. 2016. Metabolic Engineering of Probiotic Saccharomyces boulardii. Applied and Environvironmental Microbiology 82, 2280-2287. http://dx.doi.org/10.1128/aem.00057-16

Maeder ML, Gersbach CA. 2016. Genome-editing Technologies for Gene and Cell Therapy. Molecular Therapy 24, 430-446. http://dx.doi.org/10.1038/mt.2016.10

Marraffini LA, Sontheimer EJ. 2010. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Reviews Genetics 11, 181-190. http://dx.doi.org/10.1038/nrg2749

McHughen A, Smyth S. 2008. US regulatory system for genetically modified [genetically modified organism (GMO), rDNA or transgenic] crop cultivars. Plant Biotechnology Journal 6, 2-12. http://dx.doi.org/10.1111/j.1467-7652.2007.00300.x

Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution 60, 174-182. http://dx.doi.org/10.1007/s00239-004-0046-3

Peng Y. 2016. The morality and ethics governing CRISPR-Cas9 patents in China. Nature Biotechnology 34, 616-618. http://dx.doi.org/10.1038/nbt.3590

Pennisi E. 2013. The CRISPR craze. Science 341, 833-836. http://dx.doi.org/10.1126/science.341.6148.833

Pourcel C, Salvignol G, Vergnaud G. 2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151, 653-663. http://dx.doi.org/10.1099/mic.0.27437-0

Regalado A. 2018. Chinese Researchers experiment with making embryos resistant to HIV.

Ruan GX, Barry E, Yu D, Lukason M, Cheng SH, Scaria A. 2017. CRISPR/Cas9-Mediated Genome Editing as a Therapeutic Approach for Leber Congenital Amaurosis 10. Molecullar Therapy 25, 331-341. http://dx.doi.org/10.1016/j.ymthe.2016.12.006

Salmaninejad A, Valilou SF, Bayat H, Ebadi N, Daraei A, Yousefi M, Nesaei A, Mojarrad M. 2018. Duchenne muscular dystrophy: an updated review of common available therapies.International Journal of Neuroscience 1-11. http://dx.doi.org/10.1080/00207454.2018.1430694

Sander JD, Joung JK. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology 32, 347-355. http://dx.doi.org/10.1038/nbt.2842

Shimo T, Hosoki K, Nakatsuji Y, Yokota T, Obika S. 2018. A novel human muscle cell model of Duchenne muscular dystrophy created by CRISPR/Cas9 and evaluation of antisense-mediated exon skipping. Journal of Human Genetics 63, 365-375 http://dx.doi.org/10.1038/s10038-017-0400-0

Tao W, Lv L, Chen GQ. 2017. Engineering Halomonas species TD01 for enhanced polyhydroxyalkanoates synthesis via CRISPRi. Microbial Cell Factories16, 48. http://dx.doi.org/10.1186/s12934-017-0655-3

Tufts.edu. 2014. NaturalCRISPR2.png (PNG Image, 5716 × 3627 pixels) – Scaled (18%).

Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910-918. http://dx.doi.org/10.1016/j.cell.2013.04.025

WestraER, Dowling AJ, Broniewski JM, Houte Sv. 2016. Evolution and Ecology of CRISPR. Annual Review of Ecology, Evolution, and Systematics 47, 301-331 http://dxdoiorg/101146/annurev-ecolsys-121415-032428

Wright AV, Nuñez JK, Doudna JA. 2016. Biology and Applications of CRISPR Systems: Harnessing Nature’s Toolbox for Genome Engineering. Cell 164, 29-44. http://dx.doi.org/10.1016/j.cell.2015.12.035

Zhang GC, Kong II, Kim H, Liu JJ, Cate JH, Jin YS. 2014. Construction of a quadruple auxotrophic mutant of an industrial polyploid saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease. Applied and Environmental Microbiology 80, 7694-7701. http://dx.doi.org/10.1128/aem.02310-14

Zhou X, Xin J, Fan N, Zou Q, Huang J, Ouyang Z, Zhao Y, Zhao B, Liu Z, Lai S. 2015. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cellular and Molecular Life Sciences 72, 1175-1184. http://dx.doi.org/10.1007/s00018-014-1744-7


Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background