The Fabaceae family in Bangladesh: Floristic analysis, species diversity, and new additions to the flora

Paper Details

Research Paper 05/07/2025
Views (390)
current_issue_feature_image
publication_file

The Fabaceae family in Bangladesh: Floristic analysis, species diversity, and new additions to the flora

Md. Salah Uddin, Sang Woo Lee
Int. J. Biosci. 27(1), 121-131, July 2025.
Copyright Statement: Copyright 2025; The Author(s).
License: CC BY-NC 4.0

Abstract

This study presents a comprehensive floristic analysis of the Fabaceae family in Bangladesh, highlighting its taxonomy, ecological significance, and conservation implications. Based on extensive reviews of published literature and herbarium records, 606 species across 147 genera were documented. Significant findings include the identification of Crotalaria (40 species), Dalbergia (34 species), and Indigofera (25 species) as the most species-rich genera, with a high Simpson’s Diversity Index of 0.98, reflecting substantial biodiversity and evenness. Life form analysis revealed dominance by trees (26.45%) and climbers (26.15%), with native species comprising 79% of the documented flora. The geographical distribution revealed the highest species concentration in the Chittagong division (31.64%), followed by Sylhet and Dhaka regions. This study also highlights 198 newly recorded species, emphasizing their importance for conservation and sustainable utilization. These findings contribute to understanding the ecological role of Fabaceae in supporting soil health, biodiversity, and agriculture in Bangladesh, offering a foundation for further research and conservation efforts.

Ahmed ZU, Hassan MA, Begum ZNT, Khondker M, Kabir SMH, Ahmad M, Ahmed ATA, Rahman AkA. 2009. Encyclopedia of flora and fauna of Bangladesh: Angiosperms, Dicotyledons (Fabaceae-Lythraceae) Vol. 8. Asiatic Society of Bangladesh, p. 1-478.

Christenhusz MJ, Byng JW. 2016. The number of known plant species in the world and its annual increase. Phytotaxa 261(3), 201-217.

Eshaghi RJ, Manthey M, Mataji A. 2009. Comparison of plant species diversity with different plant communities in deciduous forests. International Journal of Environmental Science and Technology 6(3), 389-394.

Kebede E. 2021. Contribution, utilization, and improvement of legumes-driven biological nitrogen fixation in agricultural systems. Frontiers in Sustainable Food Systems 5, 767998.

Kent M. 2011. Vegetation description and data analysis: A practical approach. John Wiley & Sons.

POWO. 2023. Plants of the world online. Kew Science. Published on the Internet. http://powo.science.kew.org

Rahman MR. 2015. Causes of biodiversity depletion in Bangladesh and their consequences on ecosystem services. American Journal of Environmental Protection 4(5), 214–236.

Roswell M, Dushoff J, Winfree R. 2021. A conceptual guide to measuring species diversity. Oikos 130(3), 321-338.

Salisu N, Bunza MDA, Shehu K, Illo ZZ. 2021. Phytosocial diversity and distribution of herbaceous species in dryland ecosystem of Kebbi, North-western Nigeria. IOSR Journal of Environmental Science Toxicology Food Technology 15(7), 53-60.

Sghair F, Mahklouf M. 2020. Floristic analysis and species diversity of the family Fabaceae represented by voucher specimens depending on the Flora of Libya. Species 21(67), 189-201.

Smýkal P, Coyne CJ, Amrose MJ, Maxted N, Schaefer H, Blair MW, Berger J, Greene SL, Nelson MN, Besharat N. 2015. Legume crops phylogeny and genetic diversity for science and breeding. Critical Reviews in Plant Sciences 34(1-3), 43-104.

Taylor BN, Simms EL, Komatsu KJ. 2020. More than a functional group: Diversity within the legume-rhizobia mutualism and its relationship with ecosystem function. Diversity 12(2), 50.

Uddin MS, Mazumder AAM, Uddin SB. 2023. Addition of one hundred and forty-seven new vascular taxa to the flora of Bangladesh. SPECIES 24(73), 1-8.

Yahara T, Javadi F, Onoda YDQ, Luciano P, Faith DP, Prado DE, Akasaka M, Kadoya T, Ishihama F, Davies S. 2013. Global legume diversity assessment: Concepts, key indicators, and strategies. Taxon 62(2), 249-266.

Related Articles

Modelling the current and future distribution of Okoubaka aubrevillei Pellegr. & Normand under climate change scenarios in Côte d’Ivoire

Sié Fernand Pacôme Ouattara, Franck Placide Junior Pagny, Kouassi Bruno Kpangui, Int. J. Biosci. 27(5), 237-246, November 2025.

Proximate analysis of pelleted sorghum-based feeds as substitute for corn

I. I. Juan S. Daquioag, Michael M. Uy, Int. J. Biosci. 27(5), 232-236, November 2025.

Evolution of the weight of carcasses and offal of Cobb 500 broiler chickens according to the age of slaughter

Soro Soronikpoho, Kouadio Kouakou Parfait, Kouassi Koffi Dongo, Brou Gboko Konan Gatien, Int. J. Biosci. 27(5), 225-231, November 2025.

Agronomic performance of the newly pruned coffee trees at the CSU Lal-lo old coffee plantation

Maribel L. Fernandez, Florante Victor M. Balatico, Ronel A. Collado, Int. J. Biosci. 27(5), 217-224, November 2025.

A comprehensive review and meta-analysis on Alzheimer’s genetics: Exploring the genetic architecture and its application in future genomic medicine

Shafee Ur Rehman, Shabeer Khan, Muhammad Usman, Sakarie Khadar Ibrahim, Int. J. Biosci. 27(5), 204-216, November 2025.

Effect of aqueous leaf extract of Senna occidentalis (Fabaceae) on induced arrhythmia in Rabbits

Obrou Jean Luc Amiltone, Nagalo Ousmane, Mossoun Mossoun Arsène, Abo Kouakou Jean-Claude, Int. J. Biosci. 27(5), 198-203, November 2025.

Targeting proteolytic enzymes in the hemoglobin degradation pathway to inhibit Plasmodium falciparum: An in silico approach

Sethupathi Virumandi, Elumalai Balamurugan, Aakash Ganesan, Sowmiya Ganesan, Srinidhi Raveenthiran, Int. J. Biosci. 27(5), 182-197, November 2025.

Composition and variation of milk from Djallonké goats fed with different diets in Burkina Faso

Alice Gisèle Sidibé-Anago, Vinsoun Millogo, Assouan Gabriel Bonou, Remadji Rufine Djikoldingam, Mariétou Sissao, Michel Kéré, Guy Apollinaire Mensah, Int. J. Biosci. 27(5), 173-181, November 2025.