The Heavy Metals and Microbiological Profiles of the Major Drinking Water Supply System of Cagayan de Oro City, Philippines

Paper Details

Research Paper 01/03/2022
Views (1621)
current_issue_feature_image
publication_file

The Heavy Metals and Microbiological Profiles of the Major Drinking Water Supply System of Cagayan de Oro City, Philippines

Ronnie L. Besagas, Romeo M. Del Rosario, Angelo Mark P. Walag
Int. J. Biosci. 20(3), 154-160, March 2022.
Copyright Statement: Copyright 2022; The Author(s).
License: CC BY-NC 4.0

Abstract

This study characterized Cagayan de Oro’s major water supply system. Copper, chromium, lead, cobalt, manganese, nickel, and cadmium concentrations were measured in both raw and treated water along with two microbiological parameters (total coliform and Escherichia coli). The samples were composed of raw water from the Bubunawan River in Baungon, Bukidnon and processed water from selected households in Carmen, Cagayan de Oro City. The atomic absorption spectroscopy (AAS) found that most selected metals were present in raw and processed water at varying concentrations. The raw water was found to contain Cu, Cr, Pb, Mn, and Cd, while the processed water contained Cu, Cr, Pb, and Cd, with no Mn detected. The concentrations of these metals were within the PNSDW, USEPA, and WHO maximum allowable limits, indicating that the public is safe from the effects of these heavy metals. Too numerous to count total coliform bacteria indicated that the raw water sample was significantly polluted with coliform bacteria. This signifies that pathogen are present in the water supply, rendering it unsafe for human consumption unless regularly disinfected. On the other hand, the disinfected raw water or processed water had less than 1 total coliform count and no E. coli. The treated water met the PNSDW and USEPA microbiological criteria. In conclusion, the treatment process applied to Cagayan de Oro City’s major water supply system is effective in producing drinking water free of harmful heavy metals and microorganisms.

Alberta Environmental Protection. 2006. Alberta Water Quality Guideline for the Protection of Fresh Aquatic Life: Copper. Standards and Guidelines Branch, Alberta Environmental Protection. Retrieved from http://environemnt.gov.ab.ca/info/library/7253.pdf.

ATSDR. 2000. Toxicological profile for manganese. Atlanta, GA, United States Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry.

Besagas RL, Asoy AY, Ceniza MS, Leopoldo GD, Dael NT, Del Rosario RM. 2015. Upland and Coastal Freshwater Sources in Misamis Oriental, Philippines. Mindanao Journal of Science and Technology 13, 1-11.

Canavan MM, Cobb S, Srinker C. 1934. Chronic manganese poisoning. Archives of Neurology and Psychiatry 32, 501–512.

Cook DG, Fahn S, Brait KA. 1974. Chronic manganese intoxication. Archives of Neurology 3, 059– 64.

Liyanage C, Yamada K. 2017. Impact of population growth on the water quality of natural water bodies. Sustainability 9(8), 1405.

Martin S, Griswold W. 2009. Human Health Effects of Heavy Metals. Center for Hazardous Substance Research. Kansas State University. Retrieved from http://www.engg.ksu.edu/CHSR/outreach/docs/15/HumanHealthEffectofHeavyMetals.pdf.

Roels HA. 1992. Assessment of the permissible exposure level to manganese in workers exposed to manganese dioxide dust. British Journal of Industrial Medicine 49, 25–34.

Shindell DT, Rind D, Lonergan P. 1998. Climate change and the middle atmosphere. Part IV: Ozone response to doubled CO2. Journal of Climate, 11, 895–918.

Soh YC, Roddick F, Van Leeuwen J. 2008. The future of water in Australia: The potential effects of climate change and ozone depletion on Australian water quality, quantity and treatability. The Environmentalist 28(2), 158–165.

USEPA. 2000. Chromium Compounds. U. S. Environmental Protection Agency. Retrieved from http://www.epa.gov/ttn/atw/hlthef/chromium.html.

Voss R, May W, Roeckner E. 2002. Enhanced resolution modelling study on anthropogenic climate change: Changes in extremes of the hydrological cycle. International Journal of Climatology 22, 755–777.

WHO. 2011. Manganese in Drinking-water: Background document for development of WHO Guidelines for Drinking-water Quality. World Health Organization. Retrieved from https://www.who.int/water_sanitation_health/dwq/chemicals/manganese.pdf.

Zhao H, Duan X, Stewart B, You B, Jiang X. 2013. Spatial correlations between urbanization and river water pollution in the heavily polluted area of Taihu Lake Basin, China. Journal of Geographical Sciences 23(4), 735–752.

Related Articles

Response of different soybean varieties to phosphorus fertilizer microdosing and rhizobium inoculation in the sub-humid zone of Northern Benin

Pierre G. Tovihoudji*, Kamarou-Dine Seydou, Lionel Zadji, Sissou Zakari, Valerien A. Zinsou, Int. J. Biosci. 27(6), 201-213, December 2025.

On-farm validation of black soldier fly larvae meal as a sustainable replacement for shrimp meal in rainbow trout diets in the mid hills of Nepal

Ishori Singh Mahato, Krishna Paudel*, Sunita Chand, Anshuka Bhattarai, Int. J. Biosci. 27(6), 189-200, December 2025.

Insect fauna associated with Cucumis sativus (Cucurbitales: Cucurbitaceae) in Parakou, A cotton-growing area of central Benin

Lionel Zadji*, Mohamed Yaya, Roland Bocco, Prudencia M. Tovignahoua, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, Hugues Baimey, Leonard Afouda, Int. J. Biosci. 27(6), 175-188, December 2025.

First record of two hymenopteran species, Brachymeria excarinata Gahan (Chalcididae) and Pteromalus sp. (Pteromalidae), as hyperparasitoids of Diadegma insulare in Senegal

Babacar Labou*, Etienne Tendeng, Mamadou Diatte, El hadji Sérigne Sylla, Karamoko Diarra, Int. J. Biosci. 27(6), 167-174, December 2025.

Hepatoprotective and antinociceptive effects of terpinolene in streptozotocin-induced diabetic peripheral neuropathic rats

Ravishankar Sarumathi, Muthukumaran Preethi, Chandrasekaran Sankaranarayanan*, Int. J. Biosci. 27(6), 156-166, December 2025.

Agromorphological characterization of six promising bambara groundnut [Vigna subterranea (L.) Verdc.] genotypes under selection in Burkina Faso

Adjima Ouoba*, Ali Lardia Bougma, Dominique Nikiéma, Mahamadi Hamed Ouédraogo, Nerbéwendé Sawadogo, Mahama Ouédraogo, Int. J. Biosci. 27(6), 145-155, December 2025.

Integrated in silico and in vitro analyses reveal E-cadherin crosstalk and TF: FVIIa complex-mediated trophoblast motility via MEK/JNK activation

Kirthika Manoharan, Jagadish Krishnan, Vijaya Anand Arumugam, Shenbagam Madhavan*, Int. J. Biosci. 27(6), 136-144, December 2025.

Effect of flooding depth and harvest intensity on soil moisture dynamics and production of baobab (Adansonia digitata) seedlings

Sissou Zakari, Pierre G. Tovihoudji, Mouiz W. I. A. Yessoufou, Sékaro Amamath Boukari, Vital Afouda, Imorou F. Ouorou Barrè, Int. J. Biosci. 27(6), 127-135, December 2025.