Welcome to International Network for Natural Sciences | INNSpub

Paper Details

Review Paper | July 1, 2015

VIEWS 4
| Download 2

Toxicity of zinc nanoparticles in fish: a critical review

Muhammad Saleem Asghar, Naureen Aziz Qureshi, Farhat Jabeen, Muhammad Saleem Khan, Muhammad Shakeel, Aasma Noureen

Key Words:


J. Bio. Env. Sci.7(1), 431-439, July 2015

Certification:

JBES 2015 [Generate Certificate]

Abstract

Nanotechnology has noticeably developed with potential effects in every science specially by using nanoscale element. Among the nano material, ZnO-NPs have got more intention due to its special properties and its fewer hazards to the environment. Like most of the nanoparticles, ZnO is also toxic to organisms; however the toxicity of these nanoparticles can be used for antibacterial, antiviral, antifungal, and antialgal. To reduce the hazardous effects of nanoparticles, some manufacturers use chemical particles such as Nanoscale zero-valent ion that can enhance the environmental remediation of polluted water, soil and sediments. In the present study, the effect of ZnO Nanoparticles on fish model has been reviewed in detail.

VIEWS 4

Copyright © 2015
By Authors and International Network for
Natural Sciences (INNSPUB)
http://innspub.net
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Toxicity of zinc nanoparticles in fish: a critical review

Alkaladi A, Afifi M, Youssef Y, Osama M, Zinada A. 2014. Ultra structure alteration of sublethal concentrations of zinc oxide nanoparticals on Nil Tilapia (Oreochromis niloticus) and the protective effects of vitamins C and E. Life Sciences Journal 11(10), 257-262. (ISSN:1097-8135).

Bacaksiz E, Parlak M, Tomakin M, Özcelik A, Karakiz M, Altunbas M. 2008. The effect of zinc nitrate, zinc acetate and zinc chloride precursors on investigation of structural and optical properties of ZnO thin films. Journal of Alloys and Compounds 466(1-2), 447‒450. http://dx.doi.org/10.1016/j.jallcom.2007.11.061

Bai W, Zhang Z, Tian W, He X, Ma Y, Zhao Y. 2010. Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. Journal of Nanoparticle Research 12(5), 1645–54. http://dx.doi.org/10.1007/s11051-009-9740-9.

Baker RTM, Martin P, Davis SJ. 1997. Ingestion of sub-lethal levels of iron sulphate by African catfish affects growth and tissue lipid peroxidation. Aquatic Toxicology 40(1), 51–61. http://dx.doi.org/10.1016/S0166-445X(97)00047-7

Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A. 2010. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environmental Pollution 158(1), 41–47. http://dx.doi.org/10.1016/j.envpol.2009.08.017.

Brun NR, Lenz M, Wehrli B, Fent K. 2014. Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: Importance of zinc ions. Science of the Total Environment 476–477, 657–666. http://dx.doi.org/10.1016/j.scitotenv.2014.01.053.

Buerki-Thurnherr T, Xiao L, Diener L, Arslan O, Hirsch C, Maeder-althaus X. 2013. In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology 7(4), 402–416. http://dx.doi.org/10.3109/17435390.2012.666575.

Chaari M, Matoussi A. 2012. Electrical conduction and dielectric studies of ZnO pellets. Physica B: Condensed Matter 407(17), 3441‒3447. http://dx.doi.org/10.1016/j.physb.2012.04.056.

Dalzell DJB, MacFarlane NAA. 1999. The toxicity of iron to brown trout and effects on the gills: a comparison of two grades of iron sulphate. Journal of Fish Biology 55(2), 301–315. http://dx.doi.org/10.1111/j.10958649.1999.tb00680. x

Dineley KE, Votyakova TV, Reynolds IJ. Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. Journal of Neurochemistry 85(3), 563–570. http://dx.doi.org/10.1046/j.1471-4159.2003.01678.x.

Fernández D, García-Gómez C, Babín M. In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells. Science of Total Environment 452–453, 262–74. http://dx.doi.org/10.1016/j.scitotenv.2013.02.079.

Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS. 2007. Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the  importance  of  particle  solubility. Environmental Science and Technology 41(24), 8484–8490. http://dx.doi.org/10.1021/es071445r.

Gamer AO, Leibold E, Ravenzwaay B. 2006. The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicology in Vitro 20(3), 301–307. http://dx.doi.org/10.1016/j.tiv.2005.08.008.

Gavaskar A, Tatar L, Condit W. 2005. Cost and performance report nanoscale zero-valent iron technologies for source remediation. Naval Facilities Engineering Command (NAVFAC). Contract report: CR-05-007-ENV.

George S, Xia T, Rallo R, Zhao Y, Ji Z, Lin S. 2011. Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5(3), 1805–1817. http://dx.doi.org/10.1021/nn102734s.

Handy RD, Henry TB, Scown TM, Johnston BD, Tyler CR. 2008. Manufactured nanoparticles: their uptake and effects on fish—a mechanistic analysis. Ecotoxicology 17(5), 396–409. http://dx.doi.org/10.1007/s10646-008-0205-1.

Heng BC, Zhao X, Xiong S, Ng KW, Boey FYC, Loo JSC. 2010. Toxicity of zinc oxide (ZnO) nanoparticles on human bronchial epithelial cells (BEAS-2B) is accentuated by oxidative stress. Food Chemistry and Toxicology 48(6), 1762–1766. http://dx.doi.org/10.1016/j.fct.2010.04.023.

Hu X, Cook S, Wang P, Hwang HM. 2009. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Science and Total Environment 407(8), 3070–3072. http://dx.doi.org/10.1016/j.scitotenv.2009.01.033.

Jinyuan C, Xia D, Yuanyuan X, Meirong Z. 2011. Effects of titanium dioxide nano-particles on growth and some histological parameters of zebrafish (Danio rerio) after a long-term exposure. Aquatic Toxicology 101(3-4), 493–499. http://dx.doi.org/10.1016/j.aquatox.2010.12.004.

Johnston BD, Scown TM, Moger J. 2010. Bioavailability of Nanoscale Metal Oxides TiO2, CeO2, and ZnO to Fish. Environmental Science and Technology 44(3), 1144–1151. http://dx.doi.org/10.1021/es901971a.

Khan MS, Jabeen F, Asghar MS, Qureshi NA, Shakeel M, Noureen A, Shabbir S. 2015a. Role of nao-ceria in the amelioration of oxidative stress: current and future applications in medicine. International Journal of Biosciences 6(8), 89-109. http://dx.doi.org/10.12692/ijb/6.8.89-109.

Khan MS, Jabeen F, Qureshi NA, Asghar MS, Shakeel M, Noureen A. 2015b. Toxicity of silver nanoparticles in fish: a critical review. Journal of Biodiversity and Environmental Sciences 6(5), 211-227.

Korai AK, Lashari KH, Sahato GA, Kazi TG. 2010. Histological lesions in gills of feral cyprinids, related to the uptake of waterborne toxicants from Keenjhar Lake. Fish Biology 18, 157-176. http://dx.doi.org/10.1080/10641260903430522

Li H, Zhou Q, Wu YFJ, Wang T, Jiang G. 2009. Effects of waterborne nano-iron on medaka (Oryziaslatipes): Antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicology and Environmental Safety 72(3), 684-692. http://dx.doi.org/10.1016/j.ecoenv.2008.09.027.

Li S, Canas-Carrell JE, Irin F, Atore FO, Green MJ. 2013. Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique. Science of Total Environment 445–446, 9–13. http://dx.doi.org/10.1016/j.scitotenv.2012.12.037.

Li S, Wallis LK, Ma H, Diamond SA. 2014. Phototoxicity of TiO2 nanoparticles to a freshwater benthic amphipod: are benthic systems at risk? Science of Total Environment 466–467, 800–808. http://dx.doi.org/10.1016/j.scitotenv.2013.07.059.

Linhua H, Lei C. 2012. Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicology and Environmental Safety 80, 103 –110. http://dx.doi.org/10.1016/j.ecoenv.2012.02.017.

Liu J, Fan D, Wang L, Shi L, Ding J, Chen Y, Shen S. 2014. Effects OF ZnO, CuO, Au, and TiO2 Nanoparticles on Daphnia magna and early Life stages of Zebrafish Danio rerio. Environmental Protection Engineering 40, 140-149. http://dx.doi.org/10.5277/epe140111.

Ludi B, Niederberger M. 2013. Zinc oxide nanoparticles: Chemical mechanism and classical and non-classical crystallization. Dalton Transactions 42, 12554‒12568. http://dx.doi.org/10.1039/C3DT50610J.

Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nano level. Science 311, 622–627.

Ong K, Zhao X, Thistle M, Maccormack TJ, Clark RJ, Ma G. 2013. Mechanistic insights into the effect of nanoparticles on zebrafish hatch. Nanotoxicology 8(3), 295–304. http://dx.doi.org/10.3109/17435390.2013.778345.

Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoç H. 2005. A comprehensive review of ZnO materials and devices. Journal of Applied Physics 98, DOI:10.1063/1.1992666.

Poynton HC, Lazorchak JM, Impellitteri CA, Smith ME, Rogers K, Patra M. 2011. Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environmental Science and Technology 45(2), 762–768. http://dx.doi.org/10.1021/es102501z.

Saber TH. 2011. Histological Adaptation to Thermal Changes in Gills of Common Carp Fishes Cyprinus carpio L. Rafidain Journal of Science 22(1), 46- 55.

Segets D, Gradl J, Taylor RK, Vassilev V, Peukert W. 2009. Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility, and surface energy. ACS Nano 3(7), 1703–1710. http://dx.doi.org/10.1021/nn900223b.

Sensi SL, Yin HZ, Carriedo SG, Rao SS, Weiss JH. 1999. Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proceeding of National Academy of Science U S A 96, 2414–2419.

Sharma V, Anderson D, Dhawan A. 2012. Zinc oxide  nanoparticles  induce  oxidative  DNA  damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17(8), 852–870. http://dx.doi.org/10.1007/s10495-012-0705-6.

Shaw BJ, Handy RD. 2011. Physiological effects of nanoparticles on fish: A comparison of nanometals versus metal ions. Environment International 37(6), 1083–1097. http://dx.doi.org/10.1016/j.envint.2011.03.009.

Song W, Zhang J, Guo J, Zhang J, Ding F, Li L. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicological Letters 199(3), 389–397. http://dx.doi.org/10.1016/j.toxlet.2010.10.003.

Subashkumar S, Selvanayagam M. 2014. First report on: Acute toxicityand gill histopathology of fresh water fish Cyprinus carpio exposed to Zincoxide (ZnO) nanoparticles. International Journal of Scientific and Research Publications 4(3), 1-4.

Wang JX, Zhou GQ, Chen CY, Yu HW, Wang TC. 2007. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicological Letters 168(2), 176–185. http://dx.doi.org/10.1016/j.toxlet.2006.12.001.

Wang J, Cao J, Fang B, Lu P, Deng S, Wang H. 2005. Synthesis and characterization of multipod, flower-like, and shuttle-like ZnO frameworks in ionic liquids. Material Letters 59(11), 1405‒1408. http://dx.doi.org/10.1016/j.matlet.2004.11.062.

Wang ZL. 2008. Splendid one-dimensional nanostructures of zinc oxide: A new nanomaterial family for nanotechnology. ACS Nano 2(10), 1987– 1992. http://dx.doi.org/10.1021/nn800631r.

Xia T, Zhao Y, Sager T, George S, Pokhrel S, Li N. 2011. Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent  lung  and  zebrafish  embryos.  ACS  Nano  5, 1223–1235. http://dx.doi.org/10.1021/nn1028482.

Xionf DT, Fangm Yu Sima L, X, Zhu W. 2011. Effect of nano-scale TiO2, ZnO and their bulk counter parts on zebrafish: Acute toxicity, oxidative stress and oxidative damage. Science of Total environment 409(8), 1444-1452. http://dx.doi.org/10.1016/j.scitotenv.2011.01.015.

Yousefian M, Mosavi H. 2008b. Spawning of south Caspian kutum (Rutilus frisii kutum) in most migratory river of south Caspian Sea. Asian Journal of Animal and Veterinary Advances 3(6), 437-442. http://dx.doi.org/10.3923/ajava.2008.437.442

Yousefian M, Gezel HG, Hedayatifard M. 2008a. Induction of ovulation in endemic Chalcarburnus chalcoides, living in the Caspian Sea, using LRH-Aa. Combined with metoclopramide. African Journal of Biotechnology 7 (22), 4199-4201.

Zhao X, Wang S, Wu Y, You H, Lv L. 2013. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquatic Toxicology 136–137, 49–59. http://dx.doi.org/10.1016/j.aquatox.2013.03.019.

Zhu X, Wang J, Zhang X, Chang Y, Chen Y. 2009. The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology 20(19), 1–9. http://dx.doi.org/10.1088/09574484/20/19/195103.

Zhu X, Wang J, Zhang X, Chang Y, Chen Y. 2009b. The impact of ZnO nanoparticle aggregates on theembryonic development of zebrafish (Danio rerio). Nanotechnology 20, 195103. http://dx.doi.org/10.1088/09574484/20/19/195103.

Zimmermann YS, Schäffer A, Hugi C, Fent K, Corvini PFX, Lenz M. 2012. Organic photovoltaics: potential fate and effects in the environment. Environment International 49, 128–140.

SUBMIT MANUSCRIPT

Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background