Use of CROPGRO-soybean to simulate biomass and grain yield of soybean (Glycine max L.) in different planting dates

Paper Details

Research Paper 01/02/2014
Views (618)
current_issue_feature_image
publication_file

Use of CROPGRO-soybean to simulate biomass and grain yield of soybean (Glycine max L.) in different planting dates

Farzad Paknejad, Mohammad Nabi Ilkaee, Ebrahim Amiri, Mohsen Zavareh, Mohammad Reza Ardakani, Ali Kashani, Seied Mehdi Mirtaheri
J. Biodiv. & Environ. Sci. 4(2), 9-16, February 2014.
Copyright Statement: Copyright 2014; The Author(s).
License: CC BY-NC 4.0

Abstract

In order to investigation of CROPGRO-Soybean model under four sowing date management in some of growth unlimited cultivars of soybean in Karaj, this experiment carry out as a randomized complete block design in split plot arrangement with four replications in 2010. Treatments were different planting date 19 May, 29 May, 9 Jun, 19 Jun as main plot and four growth limited cultivars of soybean (Wiliams and Zan) as sub plot. Result showed that variety dimension of RMSE for biomass had 356.41-1207.33. Also variety dimension of Wilmot coefficient (d) calculated between 0.898-0.989. The Wiliams cv in planting date 19 May with RMSE= 356.41 kg/ha and d=0.989 have been highest of model coefficient efficiency. In all of treatments variety dimension of R2 curve 1:1 measured and predicted rates, equal to 0.855-0.988 and correlation coefficient at (p< 1%) was significant .The variety dimension of RMSE for grain yield all of the treatments had 151.94-880.66 kg/ha. Also variety dimension of d coefficient calculated between 0.505-880.66 kg/ha.

Overman AR, Scholtz RV. 2002. Mathematical Models of Crop Growth and Yield. Taylor and Francis, New York, USA, 344.

Prasad AK, Chai L, Singh RP, Kafatos M. 2006. Crop yield estimation model for Iowa using remote sensing and surface parameters. International Journal of Applied Earth Observation and Geoinformation 8, 26-33. http://dx.doi.org/10.1016/j.jag.2005.06.002

FAO, 2007. From: http://FAOSTAT.FAO.Org/ , 567.

Sau F, Boote KJ, Ruiz-Nogueira B. 1999. Evaluation and improvement of CROPGRO-soybean model for a cool environment in Galicia, Northwest Spain. Field Crops Research 61, 273-291. http://dx.doi.org/10.1016/S0378-4290(98)00168-3

Fehr WR, Shibles R. 1980. Stages of soybean development. Iowa State University Crop Extension Service Specific Report No. 80, Ames, IA., USA.

Hammer GL, Sinclair TR, Boote KJ, Wright GC, Meinke H, Bell MJ. 1995. A peanut simulation model. I: Model development and testing. Agronomy Journal 87, 1085-1093. http://dx.doi.org/10.2134/agronj1995.00021962008 700060009x

Hayes MJ, Decker WL. 1996. Using NOAA AVHRR data to estimate maize production in the United States Corn Belt. International Journal of Remote Sensing 17, 3189-3200. http://dx.doi.org/10.1080/01431169608949138

Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Batchelor LA, Hunt PW, Wilkens U, Singh AJ, Gijsman Ritchie JT. 2003. The DSSAT cropping system model. Europian Journal of Agronomy 18, 235-265.

Penning de Vries, FWT, Jansen DM, ten Berge HFM, Bakema A. 1989. Simulation of Ecophysiological Process of Growth in Several Annual Crops. PUDOC, Wageningen, The Netherlands, ISBN-13, 9789711042158, 271.

Monteith JL. 1981. Climatic variation and the growth of crops. Q. J. R. Meteorological Society 107, 749-774.

Sinclair TR, Ludlow MM. 1986. Influence of soil water supply on the plant water balance of four tropical grain legumes. Australian Journal of Plant Physiology 13, 329-341.

Sinclair TR, Muchow RC, Ludlow MM, Leach GJ, Lawn RJ, Foale MA. 1987. Field and model analysis of the effect of water deficits on carbon and nitrogen accumulation by soybean, cowpea and black gram. Field Crops Research 17, 121-140. http://dx.doi.org/10.1016/0378-4290(87)90087-6

Sinclair TR, Kitani S, Hinson K, Bruniard J, Horie T. 1991. Soybean flowering date: Linear and logistic models based on temperature and photoperiod. Crop Science 31, 786-790.

Soltani A, Ghassemi-Golezani K, Khooie FR, Moghaddam M. 1999. A simple model for chickpea growth and yield. Field Crops Research 62, 213-224. http://dx.doi.org/10.1016/S0378-4290(99)00017-9

Stockle CO, Nelson R. 1994. Cropping Systems Simulation Model Users’ Manual. Biological Systems Engineering Department, Washington State University, Washington, DC., USA.

Van Keulen H. 1987. Forecasting and Estimating Effects of Weather on Yield. In: Plant Growth Modeling for Resource Management, Wisiol, K. and J.D. Hesketh (Eds.). CRC Press, Boca Raton, FL., USA. ISBN: 08-493-64892.

Related Articles

Protective effect of polyherbal formula nalpamaram on the ethanol-induced toxicity in Hep G2 cell lines

S. Jyothilekshmi, Jini Joseph, J. Biodiv. & Environ. Sci. 27(5), 137-142, November 2025.

Household socio-agricultural profiles and the adoption of crop protection strategies in human-wildlife conflict contexts: Insights from western Côte d’Ivoire around mount Sangbé National Park

Koffi Kouamé Christophe, Ouffoue Affoué Eugénie Naomie, Gagbé Dalié Sylvestre, Beda Alex, J. Biodiv. & Environ. Sci. 27(5), 91-103, November 2025.

Influence of biosynthesized silver nanoparticles on pollen germination and tube growth in Catharanthus roseus (L.) G. Don

Abhijit Limaye, Shreya Mulay, Jidnyasa Jangale, Rasadnya Joshi, Swapna Sathe, Kishor Bhosale, J. Biodiv. & Environ. Sci. 27(5), 85-90, November 2025.

Genetic diversity of parasitoids and entomopathogenic nematodes of Spodoptera frugiperda Smith, 1797 (Lepidoptera: Noctuidae) in Senegal

Farma Fall Babou, Toffène Diome, Mama Racky Ndiaye, Mbacké Sembene, J. Biodiv. & Environ. Sci. 27(5), 69-84, November 2025.

Environmental and socio-economic impacts of pollution by Eichhornia crassipes (Mart.) Solms in the waters of Dams No. 2 and No. 3 in the city of Ouagadougou, Burkina Faso

Florent Y. Lankoande, Jerome T. Yameogo, Asseta Tabsoba, S. E. I. Bama, J. Biodiv. & Environ. Sci. 27(5), 59-68, November 2025.

Evaluation of grains and haulms production of soybean varieties in production areas with high livestock potentiality in Benin

Assouan Gabriel Bonou, Alain Sèakpo Yaoitcha, Serge Aklinon, J. Biodiv. & Environ. Sci. 27(5), 51-58, November 2025.