Use of stress indicators to analyze Lygeum spartum Loefl. ex L. responses to Edapho-climatic conditions in west Mediterranean steppic rangelands: Case in central steppe of Algeria

Paper Details

Research Paper 01/02/2019
Views (377) Download (18)
current_issue_feature_image
publication_file

Use of stress indicators to analyze Lygeum spartum Loefl. ex L. responses to Edapho-climatic conditions in west Mediterranean steppic rangelands: Case in central steppe of Algeria

Zohra Houyou, Hamida Mallem, Mohamed Kouidri, Ibtissem Souffi, Ahmed Boutmedjet, Mohamed El Hadi Benhorma, Ghalia Chaouche, Yasmine Ould Ali, Selma Kouidri
J. Bio. Env. Sci.14( 2), 94-110, February 2019.
Certificate: JBES 2019 [Generate Certificate]

Abstract

Lygeum spartum Loefl. ex L., is a perennial spontaneous fodder species present in many steppe of the western Mediterranean basin. Because it can provide relatively high livestock productivity, the plant is proposed for the rehabilitation of the weakened pastures. Knowledge of L. spartum‘s responses to abiotic factors that can be around it, could help for the sustainable rehabilitation of pastures threatened with desertification. During two seasons, autumn and spring, in two sites, and under two bioclimate semi-arid and arid, at Laghouat (Algeria), clump size and physiological parameters of L. spartum are analyzed. On its fresh leaves are performed measurements of water content, total chlorophyll, soluble sugars and proline. For both sites are carried out physicochemical soil analysis and climatic synthesis. Aridity Index for the two sites are respectively 0.26 and 0.06. Both soils, are sandy textured, alkaline, non saline, have a cation exchange capacity <7.5meq/100g, and active CaCO3 contents >5%. Depending on the bioclimate and the season, L. spartum’s clumps volume are between 0.013-0.313m3, in its leaves: water content is ranged between 8.20-24.16%, chlorophyll and soluble sugars content were respectively in the range of 0.85-1.31mg/g FM; 17.45-89.9mg/g FM, and the accumulated proline content between 2.6910-8-10-3mmol/g FM. The behavioral feature of L. spartum is an osmotic adjustment under drought stress. The plant is more constraint under the arid bioclimate where its growth is slow down. The findings show that aridity increase would be threatening for L. spartum.

VIEWS 9

Abdel-Latif A, El-Demerdash FM. 2017. The Ameliorative Effects of Silicon on Salt-Stressed Sorghum Seedlings and Its Influence on the Activities of Sucrose Synthase and PEP Carboxylase. Journal of Plant Physiology and Pathology 5, 2-8, DOI: 10.4172/2329-955X.1000164

Aidoud A, Le Floch E, Le Houérou HN. 2006. Les steppes arides du nord de l’Afrique. Sécheresse 17, 19-30.

Amghar F, Langlois E, Forey E, Margerie P. 2016. La mise en défens et la plantation fourragère :deux modes de restauration pour améliorer la végétation, la fertilité et l’état de la surface du sol dans les parcours arides algériens. Biotechnologie Agronomie Société et Environnement 3, 386-396.

Araujo SS, Beebe S, Crespi M, Delbreil B, González EM, Gruber V, Lejeune- Henaut I, Wolfgang L, Monteros MJ, Prats E, Rao I, Vadez V, Vaz Patto, MC. 2015. Abiotic Stress Responses in Legumes: Strategies Used to Cope with Environmental Challenges, Critical Reviews in Plant Sciences 3, 237-280.

Armbruster U, Galvis VC, Kunz HH, Strand DD. 2017. The regulation of the chloroplast proton motive force plays a key role for photosynthesis in fluctuating light. Current Opinion in Plant Biology 37, 56-62.

Arnon DI. 1949. Copper enzymes in isolated chloroplasts Polyphenoloxidase in Beta vulgaris. Plant Physiology 24, 1-15.

Ashraf M, Harris PJC. 2013 Photosynthesis under stressful environments: An overview, Photosynthetica 2, 163-190 DOI: 101007/s11099-013-0021-6

Aubert G. 1978 Méthodes d’analyses des sols 2ème Edition, Centre régional de Documentation Pédagogique, CRDP Marseille, 191 p

Bagnouls F, Gaussen H. 1957. Les climats biologiques et leur classification, Annales de Géographie 335, 193-220.

Ben Mabrouk A, Kaddami H, Boufi S, Erchiqui F, Dufresne A. 2012. Cellulosic nanoparticles from alfa fibers Stipa tenacissima: extraction procedures and reinforcement potential in polymer nanocomposites, Cellulose 19, 843-853.

Bock L. 1984. L’intégration chrono spatiale des accumulations calcaires Approche morpho pédologique et géochimique dans un paysage semi aride de l’Atlas Tellien Algérie Phd Thesis 447 p, Univ-Gembloux Belgium

Choudhury FK, Rivero RM, Blumwald E, Mittler P. 2017. Reactive oxygen species, abiotic stress and stress combination, The Plant Journal 90, 856-867.

Conesa HM, Robinson BH, Schulin R, Nowack B. 2007. Growth of Lygeum spartum in acid mine tailings: response of plants developed from seedlings, rhizomes and at field conditions. Environmental Pollution, 145, 700-707.

Derks A, Schaven K, Bruce D. 2015. Diverse mechanisms for photo protection in photosynthesis Dynamic regulation of photosystem II excitation in response to rapid environmental change. Biochimica et Biophysica Acta- Bioenergetics 1847, 468-485, https://doiorg/101016/jbbabio201502008

Djili B, Hamdi-Aïssa B. 2017. Characteristics and mineralogy of desert alluvial soils: Wadi Zegrir, Northern Sahara of Algeria, Arid Land Research and Management DOI: 101080/1532498220171384413

Drouineau G. 1942. Dosage rapide du calcaire actif des sols Nouvelles données sur la répartition et la nature des fractions calcaires Annales Agron 12, 411-450.

Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry 28(3), 350-356

El Sayed AI, Rafudeen MS, Golldack G. 2013. Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. German Botanical Society and The Royal Botanical Society of the Netherlands. Plant Biology 16, 1-8 DOI: 101111/plb12053

Faraeen S, Yusuf M, Faizan M, Faraz A, Hayat S. 2016. Role of sugars under abiotic stress, Plant Physiology and Biochemistry, doi: 101016/jplaphy20

Filek M, Łabanowska M, Koscielniak J, Biesaga-Koscielniak J, Kurdziel M, Szarejko I, Hartikainen H. 2014. Characterization of Barley Leaf Tolerance to Drought Stress by Chlorophyll Fluorescence and Electron Paramagnetic Resonance Studies. Journal of Agronomy and Crop Science 201, 228-240 https://doiorg/101111/jac12063

Garg N, Singh SJ. 2018. Arbuscular Mycorrhiza Rhizophagus irregular is and Silicon Modulate Growth, Proline Biosynthesis and Yield in Cajanus cajan L Millsp pigeonpea Genotypes Under Cadmium and Zinc Stress. Journal of Plant Growth and Regulation 37, 46-63 DOI: 101007/s003

Garnier BY, Laurent G. 1994. Leaf anatomy, specific mass and water content in congeneric annual and perennial grass species. New Phytologist 128, 725-736. https://www.jstororg/stable/2558379

Ghiloufi W, Quéro pérez JL, García-gómez M, Chaieb M. 2015. Assessment of species diversity and state of Stipa tenacissima steppes. Turkish Journal of Botany 39, 227-237 DOI: 103906/bot-1404-57

Goulden M, Conway D, Persechino A. 2009. Adaptation to climate change in international river basins in Africa: a review/Adaptation au changement climatique dans les bassins fluviaux internationaux en Afrique : une revue, Hydrological Sciences Journal 54(5), 805-828

Guo YY, Yu HY, Yang MM, Konga DS, Zhang YJ. 2018. Effect of Drought Stress on Lipid Peroxidation, Osmotic Adjustment and Antioxidant Enzyme Activity of Leaves and Roots of Lycium ruthenicum Murr Seedling. Russian Journal of Plant Physiology 65, 244-250 https://doi.org/101134/S1

Harche M, Chadli R, Catesson AM. 1990. Diversity of cellulose micro fibril arrangement in the cell walls of Lygeum spartum leaves. Annals of Botany 65, 79-86 https://www.jstororg/stable/427

Hendrix CS. 2017. The streetlight effect in climate change research on Africa. Global Environmental Change 43, 137-147 https://doi.org/101016/jgloenvc

Hooke J, Sandercock P. 2012. Use of vegetation to combat desertification and land degradation: recommendations and guidelines for spatial strategies in Mediterranean lands. Landscape and Urban Planning, 107, 389-400 DOI: 101016/jlandurbplan20

Houyou Z, Bielders CL, Benhorma HA, Dellal A, Boutmedjet A. 2014. Evidence of strong land degradation by wind erosion as a result of rainfed cropping in the Algerian steppe: a case study at Laghouat. Land degradation & development 27, 1788-1796.

Hu L, Xianga L, Lia S, Zoua Z, Hua XH. 2016. Beneficial role of spermidine in chlorophyll metabolism and D1 protein content in tomato seedlings under salinity–alkalinity stress. Physiologia Plantarum 156, 468-477 DOI: 101111/ppl12398

Johnson DM, Smith WK, Vogelmann TC, Brodersen GR. 2005. Leaf architecture and direction of incident Light influence mesophyll Fluorescence profiles. American Journal of Botany 92, 1425-1431 DOI: 103732/ajb9291425

Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Lukasik I, Goltsev V, Ladle RJ. 2016. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum 38, 102 DOI: 101007/s11738

Katul G, Manzoni S, Palmroth S, Oren R. 2010. A Stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration Annals of Botany 105, 431-442, https://www.ncbinlmnihgov/pubmed/19995810

Khan MA, Shirazi MU, Khan MA, Mujtaba MS, Mumtaz EIS, Ansari SRU, Ashraf MY. 2009. Role of proline, k/na ratio and chlorophyll content in salt tolerance of wheat Triticum aestivum L Pak J Bot 412, 633-638 http://www.pakbsorg/pjbot/PDFs/412

Khayyat M, Tehranifar A, Davarynejad GH, Sayyari-Zahan MH. 2014. Vegetative growth, compatible solute accumulation, ion partitioning and chlorophyll fluorescence of ‘Malas-e-Saveh’ and ‘Shishe-Kab’ pomegranates in response to salinity stress. Photosynthetica 52, 301-312

Kumar D, Hassan MA, Naranjo MA, Agrawal V, Boscaiu M, Vicente O. 2017. Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander Nerium oleander L. PLOS ONE 129, e0185017 https://doiorg/101371/journalpone 018

Le Houérou HN. 1990. global change: vegetation, Ecosystems, and land use in the southern mediterranean basin by the mid Twenty-first century, Israel Journal of Botany 39(4-6), 481-508, http://dxdoiorg/101080/0021213X199010677170

Le Tacon F. 1978. La présence de calcaire dans le sol Influence sur le comportement de l’Epicéa commun Picea excelsa Link et du Pin noir d’Autriche Pinus Nigra nigricans Host Annales des sciences forestières 35, 165-174 https://doiorg/101051/forest/19780205

MADR. 2010. Rapport du ministère de l’agriculture et du développement rural Algeria 121p

Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JI, Damsz B, Narasimhan ML, Hasegawa PM, Joly RJ, Bressan RA. 2002. Does proline accumulation play an active role in stress-induced growth reduction? Plant Journal 31, 699–712 https://www.ncbinlmnihgov/pubmed/12220262

Metson AJ. 1956. Methods of chemical analysis for soil survey samples N Z Soil Bur Bull N° 12

Monneveux P, Nemmar M. 1986. Contribution à l’étude de la résistance à la sécheresse chez le blé tendre Triticum aestivum L et chez le blé dur Triticum durum Desf : étude de l’accumulation de la proline au cours du cycle de développement Agronomie, EDP Sciences 6, 583-590

Mu H, Lin L, Zhang Q, Tang X, Zhang X, Cheng G. 2016.Growth, proline content and proline-associated gene expression of autotetraploid Betula platyphylla responding to NaHCO3 stress. Dendrobiology 75, 123-129

Mutava RN, Prince KSJ, Syed HN, Song L, Valliyodan B, Chen W, Nguyen HT. 2015. Understanding abiotic stress tolerance mechanisms in soybean: A comparative evaluation of soybean response to drought and flooding stress Plant Physiology and Biochemistry 86, 109-120, https://doiorg/101016/jplaphy201411010

Naeem M, Naeem MS, Ahmad R, Ihsan MZ, Ashraf MY, Hussain Y, Fahad S. 2017. Foliar calcium spray confers drought stress tolerance in maize via modulation of plant growth, water relations, proline content and hydrogen peroxide activity. Archives of Agronomy and Soil Science 64, 116-131 DOI: 101080/0365034020171327713

National Academy of Sciences Research Council. 1962. Range research: basic problems and techniques Publication N˚ 890 Washington DC : National Academy of Sciences-Research Council

Nedjimi B. 2016. Lygeum spartum L: a review of a candidate for West Mediterranean arid rangeland rehabilitation The Rangeland Journal 38, 493-499.

Nedjraoui D. 2004. Évaluation des ressources pastorales des régions steppiques algérienne et définition des indicateurs de dégradation Cahiers Options Méditerranéennes 62, 239-243

Nedjraoui D, Bédrani S. 2008. La désertification dans les steppes algeriennes : causes, impacts et actions de lutte, Vertigo, la revue électronique en sciences de l’environnement, Vol 8N°1, Avril 2008 https://journalsopeneditionorg/vertigo/5375

Noushina I, Umara S, Khan NA. 2015. Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard Brassica juncea Journal of Plant Physiology 178, 84-91, DOI: 101016/jjplph201502006

Pandey P, Ramegowda V, Senthil-Kumar M. 2015. Shared and unique responses of plants to multiple individual stresses and stress combinations physiological and molecular mechanisms Frontiers in Plant Science 6, 723 DOI: 103389/fpls201500723

Per TS, Khan NA, Reddy PS, Masood A, Hasanuzzaman M, Khan MIR, Anjum NA. 2017. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics Plant Physiology and Biochemistry 115, 126-140, DOI: 101016/jplaphy201703018

Pouget M. 1980. Les relations sol-végétation dans les steppes Sud-algéroises Travaux et Documents de l’ORSTOM Paris 556 p; ISBN 2-7099-0564-7

Pugnaire FI, Haase P. 1996. Comparative physiology and growth of two perennial tussock grass species in a semi-arid environment Annals of Botany 77, 81-86.

Saidi S, Gintzburger G. 2013. A spatial desertification indicator for Mediterranean arid rangelands: a case study in Algeria the Rangeland Journal 35, 47-62.

Schurr U, Walter A, Rascher U. 2006. Functional dynamics of plant growth and photosynthesis –from steady-state to dynamics–from homogeneity to heterogeneity Plant Cell and Environment 29, 340-352.

Shi H, Qian Y, Tan DX, Reiter RJ, He C. 2015. Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis Journal Pineal Research              59, 334-342 DOI: 101111/jpi12262

Shu S, Yuan LY, Guo SR, Sun J, Yuan YH. 2013. Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and Ultra structure of chloroplasts in Cucumis sativus L under salt stress. Plant Physiology and Biochemistry 63, 209-216, https://doiorg/101016/jplaphy201211028

Sonwa DJ, Dieye A, El Mzouri EH, Majule A, Mugabe FT, Omolo N, Wouapi H, Obando J, Brooks N. 2017. Drivers of climate risk in African agriculture, Climate and Development 9(5), 383-398 DOI: 101080/1756552920161167659

Stewart PH. 1969. Quotient pluviothermique et dégradation biosphérique. Bulletin Sociéte Histoire Naturelle Afrique du Nord Alger 59, 23-36.

Thalmann M, Santelia D. 2017. Starch as a determinant of plant fitness under abiotic stress. New Phytologist 214, 943-951 https://doiorg/101111

Thornthwaite CW. 1948. An Approach toward a Rational Classification of Climate, Geographical Review 38(1), 55-94.

Turner NC, Otroole JC, Cruz RT, Namuco OS, Ahmad S. 1986. Responses of seven diverse rice cultivars to water deficits Stress: development canopy temperature, leaf rolling and growth. Field Crops Research 13, 257-271 https://doiorg/101016/0378

Wesche K, Ambar D, Kamp J, To¨ro¨k P, Treiber J, Dengler D. 2016. The Palaearctic steppe biome: a new synthesis. Biodivers Conserv 25, 2197-2231 DOI: 101007/s10531-016-1214-7

Wyn Jones RG, Storey R. 1978a. Salt stress and comparative physiology in the Gramineae II Glycinebetaine and proline accumulation in two salt- and water-stressed barley cultivars. Australian Journal of Plant Physiology 5, 817-829.

Xiong JL, Wang HC, Tan XY, Zhang CL, Naeem MS. 2018. 5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyr role and proline metabolism in Brassica napus L seedlings under NaCl stress. Plant Physiology et Biochemistry DOI: 101016/jplaphy20180100

Yeo A. 1998. Molecular biology of salt tolerance in the context of whole-plant physiology Journal of Experimental Botany 323, 915-929.

Yu Z, He C, Teixeira da Silva JA, Zhang G, Dong W, Luo J, Duan J. 2017. Molecular cloning and functional analysis of DoUGE related to water-soluble polysaccharides from Dendrobium officinale with enhanced abiotic stress tolerance Plant Cell Tissue and Organ Culture 131, 579-599.

Zandalinas SA, Mittler R, Balfagón D, Arbona V, Gómez-Cadenas A. 2018. Plant adaptations to the combination of drought and high temperatures Physiologia Plantarum 162, 2-12 DOI: 101111/ppl12

Zegaoui Z, Planchais S, Cabassa C, Djebbar R, Belbachir OA, Carol P. 2017. Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought. Journal of Plant Physiology 218, 26-34.

Zhuo C, Liang L, Zhao Y, Guo Z, Lu S. 2017. A cold responsive ERF from Medicago falcata confers cold tolerance by up-regulation of polyamine turnover, antioxidant protection and proline accumulation. Plant Cell & environment.