Welcome to International Network for Natural Sciences | INNSpub

Utilization of Microarray Analysis to Determine Therapeutic Targets in Human Cancers

Review Paper | February 1, 2016

| Download 8

Shatasha L. Hamilton, Erin N. White, Evandrew Washington, Lawrence O. Flowers

Key Words:

Int. J. Biosci.8( 2), 95-105, February 2016

DOI: http://dx.doi.org/10.12692/ijb/8.2.95-105


IJB 2016 [Generate Certificate]


Advances in DNA microarray technology have significantly improved research-based therapeutic outcomes. The rapid determination of gene expression profiles in malignant and nonmalignant cells and tissues have paved the way for the elucidation of beneficial molecular details regarding the development and progression of human diseases and the design of biomarkers. This review article focuses on microarray studies of human cancers from primary cells and cell lines. Signal transduction pathways and genetic factors that may have significant therapeutic and prognostic value are also examined in this comprehensive review.


Copyright © 2016
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Utilization of Microarray Analysis to Determine Therapeutic Targets in Human Cancers

American Cancer Society. 2015. Cancer facts & figures 2015. Atlanta: American Cancer Society.

Arvind B. 2005. Bioinformatics in microbial biotechnology – a mini review. Microbial Cell Factories 4, 19-30.

Balacescu O, Balacescu L, Tudoran O, Todor N, Rus M, Buiga R, Susman S, Fetica B, Pop L, Maja L, Visan S, Ordeanu C, Berindan-Neagoe I, Nagy V. 2014. Gene expression profiling reveals activation of the FA/BRCA pathway in advanced squamous cervical cancer with intrinsic resistance and therapy failure. BioMed Central Cancer 14, 1-14. http://dx.doi.org/10.1186/1471-2407-14-246

Bellon SF, Kaplan-Lefko P, Yang Y, Zhang Y, Moriguchi J, Rex K, Johnson CW, Rose PE, Long AM, O’Connor AB, Gu Y, Coxon A, Kim TS, Tasker A, Burgess TL, Dussault I. 2008. c-Met inhibitors with novel binding mode show activity against several hereditary papillary renal cell carcinoma-related mutations. Journal of Biological Chemistry 283, 2675-2683. http://dx.doi.org/10.1074/jbc.M705774200

Chen W, Wang G. 2012. Gene expression profiling of cancer stem cells in the DU145 prostate cancer cell line. Oncology Letters 3, 791-796. http://dx.doi.org/10.3892/ol.2012.565

Chen Z, Li S, Huang K, Zhang Q, Wang J, Li X, Hu T, Wang S, Yang R, Jia Y, Sun H, Tang F, Zhou H, Shen J, Ma D, Wang S. 2013. The nuclear protein expression levels of SNAI1 and ZEB1 are involved in the progression and lymph node metastasis of cervical cancer via the epithelial-mesenchymal transition pathway. Human Pathology 44, 2097-2105. http://dx.doi.org/10.1016/j.humpath.2013.04.001

D’Angelo G, Di Rienzo T, Ojetti V. 2014. Microarray analysis in gastric cancer: a review. World Journal of Gastroenterology 20, 11972-11976. http://dx.doi.org/10.3748/wjg.v20.i34.11972

Flowers LO. 2012. SOCS negative regulation of the JAK-STAT pathway. International Journal of Biosciences 2, 13-23.

Flowers LO. 2013. Targeting JAK-STAT signal transduction pathways in human carcinomas. International Journal of Biosciences 3, 241-250. http://dx.doi.org/10.12692/ijb/3.8.241-250

Goyal L, Muzumdar M, Zhu A. 2013. Targeting the HGF/c-MET pathway in hepatocellular carcinoma. Clinical Cancer Research 19, 2310-2318. http://dx.doi.org/10.1158/1078-0432.CCR-12-2791

Hackl H, Sanchez-Cabo F, Sturn A, Wolkenhauer O, Trajanoski Z. 2004. Analysis of DNA microarray data. Current Topics in Medicinal Chemistry 4, 1357-1370. http://dx.doi.org/10.2174/1568026043387773

Hardy J, Singleton A. 2009. Genomewide association studies and human disease. New England Journal of Medicine 360, 1759-1768. http://dx.doi.org/10.1056/NEJMra0808700

Huan JL, Gao X, Xing L, Qin XJ, Qian HX, Zhou Q, Zhu L. 2014. Screening for key genes associated with invasive ductal carcinoma of the breast via microarray data analysis. Genetics and Molecular Research 13, 7919-7925. http://dx.doi.org/10.4238/2014.September.29.5

Jiang HB, Yang TJ, Lu P, Ma YJ. 2014. Gene expression profiling of gastric cancer. European Review for Medical and Pharmacological Sciences 18, 2109-2115.

Kahn B, Collazo J, Kyprianou N. 2014. Androgen receptor as a driver of therapeutic resistance in advanced prostate cancer. International Journal of Biological Sciences 10, 588-595. http://dx.doi.org/10.7150/ijbs.8671

King H, Sinha A. 2001. Gene expression profile analysis by DNA microarrays: promise and pitfalls. Journal of the American Medical Association 286, 2280-2288. http://dx.doi.org/10.1001/jama.286.18.2280

Li H, Qi Y, Li C, Braseth LN, Gao Y, Shabashvili AE, Katovich MJ, Sumners C. 2009. Angiotensin type 2 receptor-mediated apoptosis of human prostate cancer cells. Molecular Cancer Therapeutics 8, 3255-3265. http://dx.doi.org/10.1158/1535-7163.MCT-09-0237

Lim Y, Kang H, Moon J. 2014. c-Met pathway promotes self-renewal and tumorigenecity of head and neck squamous cell carcinoma stem-like cell. Oral Oncology 50, 633-639. http://dx.doi.org/10.1016/j.oraloncology.2014.04.00 4

Limame R, de Beeck KO, Van Laere S, Croes L, De Wilde A, Dirix L, Van Camp G, Peeters M, De Wever O, Lardon F, Pauwels P. 2013. Expression profiling of migrated and invaded breast cancer cells predicts early metastatic relapse and reveals Krüppel-like factor 9 as a potential suppressor of invasive growth in breast cancer. Oncoscience 1, 69-81. http://dx.doi.org/10.18632/oncoscience.10

Liu JB, Dai CM, Su XY, Cao L, Qin R, Kong QB. 2014. Gene microarray assessment of multiple genes and signal pathways involved in androgen-dependent prostate cancer becoming androgen independent. Asian Pacific Journal of Cancer Prevention 15, 9791-9795. http://dx.doi.org/10.7314/APJCP.2014.15.22.9791

Longati P, Comoglio PM, Bardelli A. 2001. Receptor tyrosine kinases as therapeutic targets: the model of the MET oncogene. Current Drug Targets 2, 41-55. http://dx.doi.org/10.2174/1389450013348920

Macgregor PF, Squire JA. 2002. Application of microarrays to the analysis of gene expression in cancer. Clinical Chemistry 48, 1170-1177.

Mengual L, Burset M, Ars E, Lozano JJ, Villavicencio H, Ribal MJ, Alcaraz A. 2009. DNA microarray expression profiling of bladder cancer allows identification of noninvasive diagnostic markers. Journal of Urology 182, 741-748. http://dx.doi.org/10.1016/j.juro.2009.03.084

Ono H, Imoto I, Kozaki K, Tsuda H, Matsui T,Kurasawa Y, Muramatsu T, Sugihara K, Inazawa J. 2012. SIX1 promotes epithelial- mesenchymal transition in colorectal cancer through ZEB1 activation. Oncogene 31, 4923-4934. http://dx.doi.org/10.1038/onc.2011.646

Pei N, Jie F, Luo J, Wan R, Zhang Y, Chen X, Liang Z, Du H, Li A, Chen B, Zhang Y, Sumners C, Li J, Gu W, Li H. 2014. Gene expression profiling associated with angiotensin II type 2 receptor-induced apoptosis in human prostate cancer cells. Public Library of Science One 9, e92253. http://dx.doi.org/10.1371/journal.pone.0092253

Perrone E, Theoharis C, Mucci N, Hayasaka S, Taylor J, Cooney K, Rubin M. 2000. Tissue microarray assessment of prostate cancer tumor proliferation in African-American and white men. Journal of the National Cancer Institute 92, 937-939. http://dx.doi.org/10.1093/jnci/92.11.937

Peruzzi B, Bottaro D. 2006. Targeting the c-Met signaling pathway. Cancer Clinical Research 12, 3657-3660.

Savage K, Harkin D. 2015. BRCA1, a ‘complex’ protein involved in the maintenance of genomic stability. Federation of European Biochemical Societies Journal 282, 630-646. http://dx.doi.org/10.1111/febs.13150

Smith SL, Plant D, Eyre S, Barton A. 2013. The potential use of expression profiling: implications for predicting treatment response in rheumatoid arthritis. Annals of the Rheumatic Diseases 72, 1118-1124. http://dx.doi.org/10.1136/annrheumdis-2012-202743

Steiner J, Davis J, McClellan J, Enos R, Carson J, Fayad R, Nagarkatti M, Nagarkatti P, Altomare D, Creek K, Murphy E. 2014. Dose-dependent benefits of quercetin on tumorigenesis in the C3(1)/SV40Tag transgenic mouse model of breast cancer. Cancer Biology & Therapy 15, 1456-1467. http://dx.doi.org/10.4161/15384047.2014.955444

Wan F, Miao X, Quraishi I, Kennedy V, Creek KE, Pirisi L. 2008. Gene expression changes during HPV-mediated carcinogenesis: a comparison between an in vitro cell model and cervical cancer. International Journal of Cancer 123, 32-40. http://dx.doi.org/10.1002/ijc.23463

Wu W, Ren Z, Li P, Yu D, Chen J, Huang R, Liu H. 2015. Six1: a critical transcription factor in tumorigenesis. International Journal of Cancer 136, 1245-1253. http://dx.doi.org/10.1002/ijc.2875

Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L. 2011. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research 39, W316-W322. http://dx.doi.org/10.1093/nar/gkr483

Xu H, Pirisi L, Creek KE. 2015. Six1 overexpression  at  early  stages  of  HPV16-mediated transformation of human keratinocytes promotes differentiation  resistance  and  EMT.  Virology  474, 144-153. http://dx.doi.org/10.1016/j.virol.2014.10.010

Xu L, Wang Z, Li XF, He X, Guan LL, Tuo JL, Wang Y, Luo Y, Zhong HL, Qiu SP, Cao KY. 2013. Screening and identification of significant genes related to tumor metastasis and PSMA in prostate cancer using microarray analysis. Oncology Reports 30, 1920-1928.

Yu H, Li X, Sun S, Gao X, Zhou D. 2012. c-Met inhibitor SU11274 enhances the response of the prostate cancer cell line DU145 to ionizing radiation. Biochemical and Biophysical Research Communications 427, 659-665. http://dx.doi.org/10.1016/j.bbrc.2012.09.117