Variability analysis in F6 lines of tomato for the role of trichomes for resistance against fruit borer (Helicoverpa armigira)

Paper Details

Research Paper 01/04/2018
Views (715)
current_issue_feature_image
publication_file

Variability analysis in F6 lines of tomato for the role of trichomes for resistance against fruit borer (Helicoverpa armigira)

Mehboob Ahmad, Bilal Ahmed Khan, Mazhar Iqbal, Isma Khurshid, Kehkashan Akbar, Muhmmad Shahid, Adil Rehman, Mehmoodur Rehman, Akhtar Nawaz
Int. J. Biosci. 12(4), 181-187, April 2018.
Copyright Statement: Copyright 2018; The Author(s).
License: CC BY-NC 4.0

Abstract

Use of pesticides to control the pest is unsafe practice for environment and human health therefore the present era scientist are seeking to adopt host-plant resistance which is a natural strategy to control the pests on crops. Our study aims to find the role of trichomes in conferring resistance against fruit borers(Helicoverpa armigira) in tomato breeding lines.F6 lines were transplanted in the field and data  were collected  on trichomes density, No of fruits affected by fruit borers(Helicoverpa armigira) and total number of fruits/plant. The lines having higher density of trichomes  (6.5 on the scale of 10) were found to be less affected (1.33 Nos fruits affected) by fruit borers  (Helicoverpa armigira)as compared to the lines with lower trichome density .Highest value of Va(5.3) was reported for Number of fruits/plant. Heritability % was found to be lower for all the parameters. The degree of resemblance was found to be moderate for all the parameters. Vp (Phenotypic variance)  and Va values within the lines exceeded the Vp and Va values of the whole population. The high difference was found between the Vp and Va within the lines. The PCV (Phenotypic Coefficient of Variation) within the lines for fruits affected/plant, for non-glandular trichomes type V and for glandular trichomes type VI was found to be higher. The above mentioned findings depict that trichomes confer resistance to host plant against fruit borers and can be relayed upon to some extent for crop protection.

Ahmad M, IqbalM, Khan BA,  Khan ZU, Ullah I, Akbar  K, Shahid M, Rehman A. 2017. Response to Selection and Decline in Variability, Heritabilty and Genetic Advance from F2 to F3 Generation of Tomato (Solanum lycopercicum). International  Journal of  Plant Research 7(1),1-4. http://dx.doi.org/10.5923/j.plant.20170701.01

Burton GW, Devane EH.1953. Estimating heritability in tall fescue (Festuca arundinacea) from Replicated Colonel Material. Agronomy Journal 45, 478-481.

Dimoch  MB, Kennedy  GG. 1983. The role of glandular trichomes in the resistance of Lycopersicum hirsutum f. glabratumto  Heliothiszea. Entomologia Experimentali Set Applicata 33, 263-268.

Duffey  SS, Isman  MB. 1981. Inhibition of insect larval growth by phenolics in glandular trichomes of tomato leaves.Experientia 37(6),574-574.

Falconer DS. 1960. Introduction to quantitative genetics. Oliver and boydLtd ,Edinberg .

Farrar  RRJ,  Kennedy GG, Kashyap RK. 1992. influence of life history differences of two tachinid of parsitiods of Helicoverazea and their interection with glandular  trichomes /methyl ketone based insect resistance in tomato. Journal of  Chemical Ecology 18,499-515.

Gopalakarshinan R. 2006. Induced resistance in tomato against key insect pests. M.S Dissertation, Annamali university, India.

Haider  MS, Tahir  M, Latif  S, Briddon  RW. 2006. First report of Tomato leaf curl New Delhi virus infecting Ecliptaprostrata in Pakistan. Plant Pathology 55(2),285-289. https://doi.org/10.1111/j.1365-3059.2005.01278.x

Inayatullah  M.2007. Biological control of tomato fruitworm (Helicoverpa armigera) using egg parasitoid Trichogramma chilonis (Trichogrammatidae: Hymenoptera) and Chrysoperla carnea (Chrysopidae: Neuroptera). First Annual Technical Report, HEC Funded Project.

Kamil   MM, Mohamed GF, Shaheen  MS. 2011. Fourier transformer infrared spectroscopy for quality assurance of tomato products. Journal of American  Science7,558-72.

Kowalski  SP, Plaisted RL, Steffens JC. 1993. Immunodetection of Polyphenol oxidase in glandular trichomes of S. berthaultii, S. tuberosum and their hybrids. Aemrican potato Journal 70(3), 185-199. https://doi.org/10.1007/BF02849308

Maiti  R,  Satya P,  Rajkumar D, Ramaswamy  A. 2012. Crop  plant anatomy.CAB . international, Oxfordshire,UK.

Romeis  J,  Shannower  TG , Peter  AG.1999.Trichomes on pigeon pea (Cajanus cajan L) and  two wild cajanusspp . Crop science 39, 564-569.

Sahu  IK, Shaw SS, Gupta AK. 2005. Relative preference of tomato genotypes by fruit borer (Helicoverpa armigera) (Hub.). National Journal of Plant Improvement 7(1), 44-46.

Selvanarayanan  V. 2015. Redesigning research on crop resistance to insect:Experience with tomato. In: A.K. Chakarvathy,  New horizons in insect science :Towards sustaianable pest management). New Dehli, India: Springer. 295-299.

Sharma HC, Sujana  G, Rao DM. 2009. Morphological and chemical components of resistance to pod borer, Helicoverpa armigera in wild relatives of pigeonpea. Arthropod-Plant Interactions 3(3), 151-61. https://doi.org/10.1007/s11829-009-9068-5

Souza JC, Reis PR. 1999. Pragas da batataem Minas Gerais. In: EPAMIG: Belo Horizonte, p. 62.

Sultani MS,Omid AR. 2013. Evaluation of tomato genotypes for resistance to fruit borer Helicoverpa armigera (Hubner), (Lepidoptera: Noctuidae). Conference: The International Conference on Insect Science (14, 15, 16 and 17th February 2013Bangalore, India), At Bangalore, India.

Wallace  DH,  Ozbun  JL,  Munger  HM. 1972. Advances in agronomy. American society of agronomy, Academic press, New York.

Wrike G,Weber WE. 1986. Quantitative genetics and selection in plant breeding. Walter de Gruyter, Newyork.

Related Articles

Modelling the current and future distribution of Okoubaka aubrevillei Pellegr. & Normand under climate change scenarios in Côte d’Ivoire

Sié Fernand Pacôme Ouattara, Franck Placide Junior Pagny, Kouassi Bruno Kpangui, Int. J. Biosci. 27(5), 237-246, November 2025.

Proximate analysis of pelleted sorghum-based feeds as substitute for corn

I. I. Juan S. Daquioag, Michael M. Uy, Int. J. Biosci. 27(5), 232-236, November 2025.

Evolution of the weight of carcasses and offal of Cobb 500 broiler chickens according to the age of slaughter

Soro Soronikpoho, Kouadio Kouakou Parfait, Kouassi Koffi Dongo, Brou Gboko Konan Gatien, Int. J. Biosci. 27(5), 225-231, November 2025.

Agronomic performance of the newly pruned coffee trees at the CSU Lal-lo old coffee plantation

Maribel L. Fernandez, Florante Victor M. Balatico, Ronel A. Collado, Int. J. Biosci. 27(5), 217-224, November 2025.

A comprehensive review and meta-analysis on Alzheimer’s genetics: Exploring the genetic architecture and its application in future genomic medicine

Shafee Ur Rehman, Shabeer Khan, Muhammad Usman, Sakarie Khadar Ibrahim, Int. J. Biosci. 27(5), 204-216, November 2025.

Effect of aqueous leaf extract of Senna occidentalis (Fabaceae) on induced arrhythmia in Rabbits

Obrou Jean Luc Amiltone, Nagalo Ousmane, Mossoun Mossoun Arsène, Abo Kouakou Jean-Claude, Int. J. Biosci. 27(5), 198-203, November 2025.

Targeting proteolytic enzymes in the hemoglobin degradation pathway to inhibit Plasmodium falciparum: An in silico approach

Sethupathi Virumandi, Elumalai Balamurugan, Aakash Ganesan, Sowmiya Ganesan, Srinidhi Raveenthiran, Int. J. Biosci. 27(5), 182-197, November 2025.

Composition and variation of milk from Djallonké goats fed with different diets in Burkina Faso

Alice Gisèle Sidibé-Anago, Vinsoun Millogo, Assouan Gabriel Bonou, Remadji Rufine Djikoldingam, Mariétou Sissao, Michel Kéré, Guy Apollinaire Mensah, Int. J. Biosci. 27(5), 173-181, November 2025.