Physiological, medical importance and microscopic characterization of selected medicinal plants

Paper Details

Research Paper 01/09/2019
Views (798)
current_issue_feature_image
publication_file

Physiological, medical importance and microscopic characterization of selected medicinal plants

Z. Haider1, M. Noor, MZ Hassan, A Rubab, MH Mahmood, K Shahzadi, H Javaid, H Mushtaq, I Mushtaq, S Shahid, SA Sajid, SN Sajid
J. Biodiv. & Environ. Sci. 15(3), 103-108, September 2019.
Copyright Statement: Copyright 2019; The Author(s).
License: CC BY-NC 4.0

Abstract

Epidermis is the outermost, protoderm derived layer of cells covering the leaf. The epidermis and its waxy cuticleprovide a protective barrier against mechanical injury, water loss, and infection. Various modified epidermal cells regulate transpiration, increase water absorption, and secrete substances. The colonization of land by terrestrial plants was enabled by the evolution of specialized pores (stomata) on the leaf epidermis that regulate the exchange of water vapour and CO2 between the leaf interior and the atmosphere. Research was based on micro examination of some selected medicinal plants that carried out in the old Botanical of the Agriculture University Faisalabad. In some selected dicot plants leaves two type of epidermis were observed. The upper one called the adaxial and lower one called abaxial. In dicots plants following shapes of the shapes of the cell and stomata are observe anomocytic type in that guard cells are surround by many similar in size and shape to the epidermal cells means here no subsidiary cells are found. Crucuferious type show that guard cells are surrounded by three subsidiary cells of unequal size. Paralytic type show that guard cells accompanied by one or more subsidiary cells parallel to axes. Diacytic type in which stomata surround by the two subsidiary cells. These shapes of the cells were observed under the microscope.These observations lead to evolutionary medicinal importance and of various morphological characterization of this selected medicinal plant.

Ahmad I, Khan S, Naeem M, Hayat M, Ahmed S, Murtaza G, Irfan M. 2019. Molecular Identification of Ten Palm Species using DNA Fingerprinting, Int. J. Pure App. Biosci 7(1), 46-51.

Crane PR, Kenrick P. 1997. The origin and early evolution of plants on land. Nature 389, 33. Retrieved from papers.

Brodribb B, Tim J, Mcadam SAM. 2014. Passive Origins of Stomatal Control 582, 20-11.

Doyle JA, Donoghue MJ. 1986. Seed plant phylogeny and the origin of angiosperms: An experimental cladistic approach. The Bot. Rev 52, 321-431.

Larkin JC, Marks MD, Nadeau J, Sackc F. 1997. Epidermal Cell Fate and Patterning in Leaves 9(July).

Mcelwain JC, Yioti T, Lawson T. 2016. Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution.New Phytol 209, 94-103.

Norfaizal G, Noraini T, Latif A, Masrom H, Salmaniza S. 2018. Variation in the stomatal types and anticlinical wall pattern in Malaysian Spindaceeae Species. Asian journl of Microbiolology, Biotechnology and Enviroenmtal Sciences 20(2), 387-403.

Ohashi K, Bergmann DC. 2006. Arabidopsis FAMA Controls the Final Proliferation/ Differentiation Switch during Stomatal Development. The Plant Cell Online 18, 2493-2505.

Pillitteri LJ, Sloan DB, Bogenschutz NL,Torii KU. 2007. Termination of asymmetric cell division and differentiation of stomata. Nature 445, 501-505.

Rudal PJ, Gardens RB, Hilton J. 2013. Tansley review Several developmental and morphogenetic factors govern the evolution of stomatal patterning in land plants.

Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran T. 2012. Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications 3, 810-837.

Zhao X, Yang Y, Shen Z, Zhang H, Wang G, Gan Y. 2006. Stomatal clustering in Cinnamomum camphora. S. Afri. J. Bot 72, 565-569.

Related Articles

An investigation of phytochemical constitutents and pharmacological activities of Strobilanthes andamanensis leaf extract

Deepika, V. Ambikapathy, S. Babu, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(4), 86-94, October 2025.

Assessing public awareness and knowledge of drinking water safety in Carmen, Cagayan De Oro City, Philippines

Ronnie L. Besagas, Romeo M. Del Rosario, Angelo Mark P. Walag, J. Biodiv. & Environ. Sci. 27(4), 80-85, October 2025.

Baseline floristics and above-ground biomass in permanent sample plots across miombo woodlands in different land tenure systems in Hwedza, Zimbabwe

Edwin Nyamugadza, Sara Feresu, Billy Mukamuri, Casey Ryan, Clemence Zimudzi, J. Biodiv. & Environ. Sci. 27(4), 65-79, October 2025.

Adapting to shocks and stressors: Aqua-marine processors approach

Kathlyn A. Mata, J. Biodiv. & Environ. Sci. 27(4), 57-64, October 2025.

Design and development of a sustainable chocolate de-bubbling machine to reduce food waste and support biodiversity-friendly cacao processing

John Adrian B. Bangoy, Michelle P. Soriano, J. Biodiv. & Environ. Sci. 27(4), 41-47, October 2025.

Ecological restoration outcomes in Rwanda’s Rugezi wetland: Biodiversity indices and food web recovery

Concorde Kubwimana, Jean Claude Shimirwa, Pancras Ndokoye, J. Biodiv. & Environ. Sci. 27(4), 32-40, October 2025.

Noise pollution in the urban environment and its impact on human health: A review

Israa Radhi Khudhair, Bushra Hameed Rasheed, Rana Ihssan Hamad, J. Biodiv. & Environ. Sci. 27(4), 28-31, October 2025.