Dendrimers: A potential novel drug carrier
Paper Details
Dendrimers: A potential novel drug carrier
Abstract
Dendrimers- a novel synthetic polymeric system, comes with unique physicochemical properties due to their exclusive three-dimensional structure. Thus, features like distinct shape, size, monodispersity and the molecular weight is attained. Moreover, it presents compatibility with drug active moieties along with bioactive molecules including heparin, DNA and polyanions, to name a few. The recognition abilities and nanoscopic size make it a remarkable tool for self-assembly and coordination. In addition to this, the internal voids of the dendritic configuration allow the incorporation of hydrophilic and phobic drugs. Yet the end groups are catered for combining the bioactive constituents and antibodies, enabling better reactivity, solubility and miscibility. Currently, dendrimers are a point of interest for the exploration of new routes and to serve as nanocarriers. However, the cationic charge and toxicity are neutralized via PEGylation of dendrimers still keeping its carrier properties intact. The undertaken review comprises numerous properties and structural characteristics of dendrimers and their applications as a potential novel delivery system.
Ambekar RS, Choudhary M, Kandasubramanian B. 2020. Recent advances in dendrimer-based nanoplatform for cancer treatment: A review. European Polymer Journal 126, 109546. https://doi.org/10.1016/j.eurpolymj.2020.109546
Araújo RV, Santos SD, Igne Ferreira E, Giarolla J. 2018. New advances in general biomedical applications of PAMAM dendrimers. Molecules 23(11), 2849. https://doi.org/10.3390/molecules23112849
Augustus EN, Allen ET, Nimibofa A, Donbebe W. 2017. A review of synthesis, characterization and applications of functionalized dendrimers. American Journal of Polymer Science 7(1), 8-14. https://doi.org/10.5923/j.ajps.20170701.02
Baig T, Nayak J, Dwivedi V, Singh A, Srivastava A, Tripathi PK. 2015. A review about dendrimers: synthesis, types, characterization and applications. International Journal of Advances in Pharmacy, Biology and Chemistry 4, 44-59. http://www.ijapbc.com/files/30-01-15/07-4105.pdf
Boas U, Christensen JD, Christensen JB, Heegaard PM. 2006. Dendrimers in medicine and biotechnology: new molecular tools. Royal Society of Chemistry (RSC) Publishers.
Caminade AM, Majoral JP. 2016. Bifunctional phosphorus dendrimers and their properties. Molecules 21(4), 538. https://doi.org/10.3390/molecules21040538
Carmo DR, Paim LL. 2013. Investigation about the copper adsorption on the chloropropylsilica gel surface modified with a nanostructured dendrimer DAB-Am-16: an analytical application for determination of copper in different samples. Materials Research 16(1), 164-72. http://dx.doi.org/10.1590/S151614392012005000163.
Carmo DR, Silveira TF, Laurentiz RS, Bicalho UO, Martins L, Dias Filho NL, Paim LL. 2013. Synthesis and preliminary characterization of Poly (Propylene) Imine hexadecylamine dendrimer (DAB-Am-16) modified with methyl acrylate. American Chemical Science Journal 3, 314-24. http://hdl.handle.net/11449/123644
Chauhan AS. 2018. Dendrimers for drug delivery. Molecules 23(4), 938. https://doi.org/10.3390/molecules23040938
Cui Y, Liang B, Wang L, Zhu L, Kang J, Sun H, Chen S. 2018. Enhanced biocompatibility of PAMAM dendrimers benefiting from tuning their surface charges. Materials Science and Engineering 93, 332-40. https://doi.org/10.1016/j.msec.2018.07.070
Dadapeer E, Babu BH, Reddy CS, Charmarthi NR. 2010. Synthesis, spectral characterization, electron microscopic study and thermogravimetric analysis of a phosphorus containing dendrimer with diphenylsilanediol as core unit. Beilstein journal of organic chemistry 6(1), 726-31.
Entezar-Almahdi E, Mohammadi-Samani S, Tayebi L, Farjadian F. 2020. Recent advances in designing 5-fluorouracil delivery systems: a stepping stone in the safe treatment of colorectal cancer. International Journal of Nanomedicine 15, 5445. https://doi.org/10.2147/IJN.S257700
Esmaeili E, Khalili M, Sohi AN, Hosseinzadeh S, Taheri B, Soleimani M. 2019. Dendrimer functionalized magnetic nanoparticles as a promising platform for localized hyperthermia and magnetic resonance imaging diagnosis. Journal of Cellular Physiology 234(8), 12615-24. https://doi.org/10.1002/jcp.27849
Gao J, Wang Y, Du Y, Zhou L, He Y, Ma L, Yin L, Kong W, Jiang Y. 2017. Construction of biocatalytic colloidosome using lipase-containing dendritic mesoporous silica nanospheres for enhanced enzyme catalysis. Chemical Engineering Journal 317, 175-86. https://doi.org/10.1016/j.cej.2017.02.012
Gautam SP, Gupta AK, Agrawal S, Sureka S. 2012. Spectroscopic characterization of dendrimers. International Journal of Pharmacy and Pharmaceutical Sciences 4(2), 77-80.
Gillies ER, Frechet JM. 2005. Dendrimers and dendritic polymers in drug delivery. Drug Discovery Today 10(1), 35-43. https://doi.org/10.1016/S1359-6446(04)03276-3
Golshan M, Rostami-Tapeh-Esmail E, Salami-Kalajahi M, Roghani-Mamaqani H. 2020. A review on synthesis, photophysical properties, and applications of dendrimers with perylene core. European Polymer Journal 11, 109933. https://doi.org/10.1016/j.eurpolymj.2020.109933
Gorain B, Choudhury H, Pandey M, Nair AB, Amin MC, Molugulu N, Deb PK, Tripathi PK, Khurana S, Shukla R, Kohli K. 2019. Dendrimer-based nanocarriers in lung Cancer therapy. InNanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer 2019, 161-192. https://doi.org/10.1016/B978-0-12-815720-6.00007-1
Grayson SM, Frechet JM. 2001. “Convergent dendrons and dendrimers: from synthesis to applications.” Chemical reviews 101(12), 3819-3868. https://doi.org/10.1021/cr990116h
Gupta U, Agashe HB, Asthana A, Jain NK. 2006. Dendrimers: novel polymeric nanoarchitectures for solubility enhancement. Biomacromolecules 7(3), 649-58. https://doi.org/10.1021/bm050802s
Gupta V, Nayak SK. 2015. “Dendrimers: a review on synthetic approaches.” Journal of Applied Pharmaceutical Science 5(03), 117-122. Https://doi.org/10.7324/JAPS.2015.50321
Hawker CJ, Frechet JM. 1990. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. Journal of the American Chemical Society 112(21), 7638-47. https://doi.org/10.1021/ja00177a027
Hawker CJ, Frechet JM. 1992. Unusual macromolecular architectures: The convergent growth approach to dendritic polyesters and novel block copolymers. Journal of the American Chemical Society 114(22), 8405-13. https://doi.org/10.1021/ja00048a009
Kandi MR, Mohammadnejad J, Ardestani MS, Zabihollahi R, Soleymani S, Aghasadeghi MR, Baesi K. 2019 Inherent anti-HIV activity of biocompatible anionic citrate-PEG-citrate dendrimer. Molecular Biology Reports 46(1), 143-9. https://doi.org/10.1007/s11033-018-4455-6
Kim K, Lee J, Jo G, Shin S, Kim JB, Jang JH. 2016. Dendrimer-capped gold nanoparticles for highly reliable and robust surface enhanced Raman scattering. Acs Applied Materials & Interfaces 8(31), 20379-84. https://doi.org/10.1021/acsami.6b05710
Klajnert B, Bryszewska M. 2001. Dendrimers: properties and applications. Acta biochimica polonica 48(1), 199-208. https://doi.org/10.18388/abp.2001_5127
Kontogiannopoulos KN, Dasargyri A, Ottaviani MF, Cangiotti M, Fessas D, Papageorgiou VP, Assimopoulou AN. 2018. Advanced drug delivery nanosystems for Shikonin: a calorimetric and electron paramagnetic resonance study. Langmuir 4(32), 9424-34. https://doi.org/10.1021/acs.langmuir.8b00751
Mekuria SL, Debele TA, Tsai HC. 2017. Encapsulation of gadolinium oxide nanoparticle (Gd2O3) contrasting agents in PAMAM dendrimer templates for enhanced magnetic resonance imaging in vivo. ACS Applied Materials & Interfaces 9(8), 6782-95. https://doi.org/10.1021/acsami.6b14075
Mizugaki T, Ooe M, Ebitani K, Kaneda K. 1999. Catalysis of dendrimer-bound Pd (II) complex: selective hydrogenation of conjugated dienes to monoenes. Journal of Molecular Catalysis A: Chemical 145(1-2), 329-33. https://doi.org/10.1016/S1381-1169(99)00186-7
Moulines F, Djakovitch L, Gloaguen B, Thiel W, Fillaut JL, Delville MH, Astruc D, Boese R. 1993. Organometallic Molecular Trees as Multielectron and Multiproton Reservoirs: CpFe+‐Induced Nonaallylation of Mesitylene and Phase‐Transfer Catalyzed Synthesis of a Redox‐Active Nonairon Complex. Angewandte Chemie 32(7), 1075-7. https://doi.org/10.1002/anie.199310751
Najafi F, Salami-Kalajahi M, Roghani-Mamaqani H. 2020. A review on synthesis and applications of dendrimers. Journal of the Iranian Chemical Society. https://doi.org/10.1007/s13738-020-02053-3
Najlah M, D’Emanuele A. 2006. Crossing cellular barriers using dendrimer nanotechnologies. Current Opinion in Pharmacology 6(5), 522-7. https://doi.org/10.1016/j.coph.2006.05.004
Newkome GR, Keith JM, Baker GR, Escamilla GH, Moorefield CN. 1994. Chemistry within a Unimolecular Micelle Precursor: Boron Superclusters by Site‐and Depth‐Specific Transformations of Dendrimers. Angewandte Chemie 33(6), 666-8. https://doi.org/10.1002/anie.199406661
Ottaviani MF, Turro NJ, Jockusch S, Tomalia DA. 2003. EPR investigation of the adsorption of dendrimers on porous surfaces. The Journal of Physical Chemistry 107(9), 2046-53. https://doi.org/10.1021/jp0223612
Padilla De Jesús OL, Ihre HR, Gagne L, Fréchet JM, Szoka FC. 2002. Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjugate Chemistry 13(3), 453-61. https://doi.org/10.1021/bc010103m
Palmerston Mendes L, Pan J, Torchilin VP. 2017. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 22(9), 1401. https://doi.org/10.3390/molecules22091401
Parshad B, Yadav P, Kerkhoff Y, Mittal A, Achazi K, Haag R, Sharma SK. 2019. Dendrimer-based micelles as cyto-compatible nanocarriers. New Journal of Chemistry 43(30), 11984-93.
Salvi L, Dubey CK, Sharma K, Nagar D, Meghani M, Goyal S, Nagar JC, Sharma A. 2020. A Synthesis, Properties and Application as a Possible Drug Delivery Systems Dendrimers–A Review. Asian Journal of Pharmaceutical Research and Development 8(2), 107-13. https://doi.org/10.22270/ajprd.v8i2.676
Sánchez A, Villalonga A, Martínez-García G, Parrado C, Villalonga R. 2019. Dendrimers as Soft Nanomaterials for Electrochemical Immunosensors. Nanomaterials 9(12), 1745. https://doi.org/10.3390/nano9121745
Santos A, Veiga F, Figueiras A. 2020. Dendrimers as pharmaceutical excipients: synthesis, properties, toxicity and biomedical applications. Materials 13(1), 65. https://doi.org/10.3390/ma13010065
Serenko O, Strashnov P, Kapustin G, Kalinin M, Kuchkina N, Serkova E, Shifrina Z, Muzafarov A. 2017. Adsorption properties of pyridylphenylene dendrimers. RSC advances 7(13), 7870-5. https://doi.org/10.1039/C6RA27064F
Shahbazi A, Younesi H, Badiei A. 2013. Batch and fixed‐bed column adsorption of Cu (II), Pb (II) and Cd (II) from aqueous solution onto functionalised SBA‐15 mesoporous silica. The Canadian Journal of Chemical Engineering 91(4), 739-50. https://doi.org/10.1002/cjce.21691
Singh U, Dar MM, Hashmi AA. 2014. Dendrimers: synthetic strategies, properties and applications. Oriental Journal of Chemistry 30(3), 911-22. http://dx.doi.org/10.13005/ojc/300301
Sorroza-Martínez K, González-Méndez I, Martínez-Serrano RD, Solano JD, Ruiu A, Illescas J, Zhu XX, Rivera E. 2020. Efficient modification of PAMAM G1 dendrimer surface with β-cyclodextrin units by CuAAC: impact on the water solubility and cytotoxicity. RSC Advances 10(43), 25557-66. https://doi.org/10.1039/D0RA02574G
Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P. 1985. A new class of polymers: starburst-dendritic macromolecules. Polymer Journal 17(1), 117-32. https://doi.org/10.1295/polymj.17.117
Tomalia DA, Dewald J, Hall M, Martin S, Smith P. 1985. Reprints of the 1st SPSJ International Polymer Conference. The Society for Polymer Science.
Tomalia DA, Reyna LA, Svenson S. 2007. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochemistry Society Transactions 35(1), 61–67. https://doi.org/10.1042/BST0350061
Tomalia DA. 2016. Functional Dendrimers. Molecules 21, 1035. https://doi.org/10.3390/molecules21081035
Tomalia DA. 2005. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Progress in Polymer Science 30(3-4), 294-324. https://doi.org/10.1016/j.progpolymsci.2005.01.007
Ulku Y, Burcu GB. 2020. The importance of nanotechnology and drug carrier systems in pharmacology. GSC Biological and Pharmaceutical Sciences 10(2), 014-23. https://doi.org/10.30574/gscbps.2020.10.2.0018
Vandamme TF, Brobeck L. 2005. Poly (amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. Journal of Controlled Release 102(1), 23-38. https://doi.org/10.1016/j.jconrel.2004.09.015
Wang L, Zhu L, Bernards MT, Chen S, Sun H, Guo X, Xue W, Cui Y, Gao D. 2019. Dendrimer-Based Biocompatible Zwitterionic Micelles for Efficient Cellular Internalization and Enhanced Antitumor Effects. ACS Applied Polymer Materials 2(2), 159-71. https://doi.org/10.1021/acsapm.9b00026
Wu SY, Chou HY, Tsai HC, Anbazhagan R, Yuh CH, Yang JM, Chang YH. 2020. Amino acid-modified PAMAM dendritic nanocarriers as effective chemotherapeutic drug vehicles in cancer treatment: a study using zebrafish as a cancer model. RSC Advances 10(35), 20682-90. https://doi.org/10.1039/D0RA01589J
Yamamoto K, Imaoka T, Tanabe M, Kambe T. 2019. New horizon of nanoparticle and cluster catalysis with Dendrimers. Chemical Reviews 120(2), 1397-437. https://doi.org/10.1021/acs.chemrev.9b00188
Ye R, Zhukhovitskiy AV, Deraedt CV, Toste FD, Somorjai GA. 2017. Supported dendrimer-encapsulated metal clusters: toward Heterogenizing homogeneous catalysts. Accounts of Chemical Research 8, 1894-901. https://doi.org/10.1021/acs.accounts.7b00232
Yu B, Wang M, Cong H, Li G. 2017. A covalent capillary coating of diazoresin and polyglycerol dendrimer for protein analysis using capillary electrophoresis. Electrophoresis 38(24), 3104-10. https://doi.org/10.1002/elps.201700249
Zhang G, Du R, Qian J, Zheng X, Tian X, Cai D, He J, Wu Y, Huang W, Wang Y, Zhang X. 2018. A tailored nanosheet decorated with a metallized dendrimer for angiography and magnetic resonance imaging-guided combined chemotherapy. Nanoscale 10(1), 488-98. https://doi.org/10.1039/C7NR07957E
Zimmerman SC, Zeng F, Reichert DE, Kolotuchin SV. 1996. Self-assembling dendrimers. Science 271(5252), 1095-8. https://doi.org/10.1126/science.271.5252.1095
Aysha Aslam, Rushda Bedar (2021), Dendrimers: A potential novel drug carrier; IJB, V18, N1, January, P68-81
https://innspub.net/dendrimers-a-potential-novel-drug-carrier/
Copyright © 2021
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0