Comparative effect of NaCl and CaCl2 on seed germination of Acacia saligna L. and Acacia decurrens Willd
Paper Details
Comparative effect of NaCl and CaCl2 on seed germination of Acacia saligna L. and Acacia decurrens Willd
Abstract
Salinity is one of the environmental factors that has a critical influence on the germination of seeds and plant establishment. Seed germination is the stage which is most susceptible to this abiotic constraint. The objective of this study was the identification of the kinetics of germination in response to salinity stress. Two experiments were separately conducted using various salinity levels of 0, 50, 100, 150, 200, 250, 300, 400 and 600 meq.L-1 created using NaCl as first experiment and by CaCl2 at the same levels in the second experiment. The seeds of two Acacia species (Acacia decurrens and Acacia saligna) were used in each experiment. The germination was evaluated in Petri dishes based on the daily rates and the cumulated rates of germination seeds over a period of 21 days. Germination of these species decreased with increasing salinity. All Acacia species showed higher tolerance to increased level of CaCl2 than to NaCl. The recovery of the seeds that did not germinate under salinity conditions using NaCl or CaCl2 at (600 meq.L-1) indicate that the sodium chloride were toxic at this concentration and thus the adverse effects of CaCl2 concentration that explained as a result of lowering osmotic potential of the external solution. High significant results indicated that the NaCl presented higher toxic effects on germination parameters than the CaCl2. Furthermore, Acacia decurrens was more tolerant than Acacia saligna with a rate of considerable germination of 46% with the concentration of (300 meq.L-1) of NaCl.
Aguiar MR, Sala OE. 1999. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends in Ecology and Evolution 14(7),273-277. http://dx.doi.org/10.1016/S0169-5347(99)01612-2
Askri H, Rejeb S, Jebari H, Nahdi H, Rejeb MN. 2007. Effet du chlorure de sodium sur la germination des graines de trois variétés de pastèque (Citrullus lanatus L.). Science et changements planétaires/Sécheresse 18(1), 51-55. http://dx.doi.org/10.1684/sec.2007.0068
Aswathappa N, Marcar NE, Thomson LAJ. 1987. Salt tolerance of Australian tropical and subtropical acacias. Australian Acacias in Developing Countries. ACIAR Proceedings 16, 70-73.
Bajji M, Kinet JM, Lutts S. 2002. Osmotic and ionic effects of NaCl on germination, early seedling growth, and ion content of Atriplex halimus (Chenopodiaceae). Canadian Journal of Botany 80(3), 297-304. http://dx.doi.org/10.1139/b02-008
Bani-Aameur F, Sipple-Michmerhuizen J. 2001. Germination and seedling survival of Argan (Argania spinosa) under experimental saline conditions. Journal of arid environments 49(3), 533-540. http://dx.doi.org/10.1006/jare.2001.0804
Bernstein L. 1975. Effects of salinity and sodicity on plant growth. Annual review of phytopathology 13(1), 295-312. http://dx.doi.org/10.1146/annurev.py.13.090175.001455
Bernstein L, Hayward HE. 1958. Physiology of salt tolerance. Annual Review of Plant Physiology 9(1), 25-46. http://dx.doi.org/10.1146/annurev.pp.09.060158.000325
Boucheneb N, Benhouhou SS. 2012. Plant communities in the Tamanrasset region, Ahaggar, Algeria. Ecologia mediterranea: Revue internationale d’écologie méditerranéenne = International Journal of Mediterranean Ecology 38(2), 67-80.
Chiapusio G, Sanchez AM, Reigosa MJ, Gonzalez L, Pellissier F. 1997. Do germination indices adequately reflect allelochemical effects on the germination process?. Journal of Chemical Ecology 23(11), 2445-2453.
Collins NC, Tardieu F, Tuberosa R. 2008. Quantitative trait loci and crop performance under abiotic stress: where do we stand?. Plant physiology 147(2), 469-486.
Côme D. 1970. Obstacles to germination. Monographies de Physiologie Végétale 6.
Cramer GR, Quarrie SA. 2002. Abscisic acid is correlated with the leaf growth inhibition of four genotypes of maize differing in their response to salinity. Functional Plant Biology 29(1), 111-115. http://dx.doi.org/10.1071/PP01131
de AzevedoNeto AD, Prisco JT, Enéas-Filho J, de Abreu CEB, Gomes-Filho E. 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany 56(1), 87-94. http://dx.doi.org/10.1016/j.envexpbot.2005.01.008
Founoune H. 2001. La symbiose ectomycorhizienne des acacias australiens en Afrique de l’Ouest: impact sur le développement de la plante hôte et sur le biofonctionnement du sol. Thèse de Doctorat, Faculté des Sciences, Meknès, Maroc.
Ghanem ME, van Elteren J, Albacete A, Quinet M, Martínez-Andújar C, Kinet JM, Lutts S. Impact of salinity on early reproductive physiology of tomato (Solanum lycopersicum) in relation to a heterogeneous distribution of toxic ions in flower organs. Functional Plant Biology 36(2), 125-136.
Girija C, Smith BN, Swamy PM. 2002. Interactive effects of sodium chloride and calcium chloride on the accumulation of proline and glycine betaine in peanut (Arachis hypogaeaL.). Environmental and Experimental Botany 47(1), 1-10.http://dx.doi.org/10.1016/S0098-8472(01)00096-X
Guan B, Zhou D, Zhang H, Tian Y, Japhet W, Wang P. 2009. Germination responses of Medicago ruthenica seeds to salinity, alkalinity, and temperature. Journal of Arid Environments 73(1), 135-138. http://dx.doi.org/10.1016/j.jaridenv.2008.08.009
Gul B, Khan MA. 2006. Role of calcium in alleviating salinity effects in coastal halophytes. Springer Netherlands. Ecophysiology of high salinity tolerant plants, 107-114. http://dx.doi.org/10.1016/j.jaridenv.2008.08.009
Hilhorst H, Karssen C. 2000. Effect of chemical environment on seed germination. Seeds. The ecology of regeneration in plants communities. Cab International, Oxon, UK, 293-309.
Jaleel CA, Gopi R, Muthiah G, Panneerselvam R. 2008. Effects of calcium chloride on metabolism of salt-stressed Dioscorea rotundata. Acta Biologica Cracoviensia Series Botanica 50, 63-67.
Jaleel CA, Sankar B, Sridharan R, Panneerselvam R. 2008. Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthus roseus. Turkish Journal of Biology 32, 79-83.
Jaouadi W, Hamrouni L, Souayeh N, Khouja ML. 2010. Etude de la germination des graines d’Acacia tortilis sous différentes contraintes abiotiques. Biotechnologie, Agronomie, Société et Environnement 14(4), 643-652.
Jordán MM, Navarro-Pedreno J, García-SánchezE, Mateu J, Juan P. 2004. Spatial dynamics of soil salinity under arid and semi-arid conditions: geological and environmental implications. Environmental Geology 45(4), 448-456. http://dx.doi.org/10.1007/s00254-003-0894-y
Khan AA. 1971. Cytokinins: permissive role in seed germination. Science 171(3974), 853-859. http://dx.doi.org/10.1126 science.171.3974.853
Khan MA, Duke NC. 2001. Halophytes–A resource for the future. Wetlands Ecology and Management 9(6), 455-456. http://dx.doi.org/10.1023/A:1012211726748
Khan MA, Ungar IA, Showalter AM. 2000. Effects of salinity on growth, water relations and ion accumulation of the subtropical perennial halophyte, Atriplex griffithii var. stocksii. Annals of Botany 85(2), 225-232. http://dx.doi.org/10.1006/anbo.1999.1022
Koyro HW. 2006. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany 56(2), 136-146. http://dx.doi.org/10.1016/j.envexpbot.2005.02.001
Kucera B, Cohn MA, Leubner-Metzger G. 2005. Plant hormone interactions during seed dormancy release and germination. Seed Science Research 15(04), 281-307. http://dx.doi.org/10.1079/SSR2005218
Kull CA, Shackleton CM, Cunningham PJ, Ducatillon C, Dufour‐Dror JM, Esler KJ, Friday JB, Gouvela AC, Griffin AR, Marchante E Midgley SJ, Pauchard A, Rangan H, Richardson DM, Rinaudo T, tassin J, Urgenson LS, von Maltitz GP, Zenni RD, Midgley SJ. 2011. Adoption, use and perception of Australian acacias around the world. Diversity and Distributions 17(5), 822-836. http://dx.doi.org/10.1111/j.1472-4642.2011.00783.x
Le Houérou HN. 1992. The role of saltbushes (Atriplex spp.) in arid land rehabilitation in the Mediterranean Basin: a review. Agroforestry systems 18(2), 107-148. http://dx.doi.org/10.1007/BF00115408
Le Houérou HN. 2000. Restoration and rehabilitation of arid and semiarid Mediterranean ecosystems in North Africa and West Asia: a review. Arid Soil Research and Rehabilitation 14(1), 3-14. http://dx.doi.org/10.1080/089030600263139
Lowe S, Browne M, Boudjelas S, De Poorter M. 2000. 100 of the world’s worst invasive alien species: a selection from the global invasive species database. Auckland, New Zealand: Invasive Species Specialist Group, p. 12.
Mauromicale G, Cavallaro V. 1995. Effects of seed osmopriming on germination of tomato at different water potential. Seed science and technology 23(2), 393-403.
Morton SR, Smith MS, Dickman CR, Dunkerley DL, Friedel MH, McAllister RRJ, Wardle GM. 2011. A fresh framework for the ecology of arid Australia. Journal of Arid Environments 75(4), 313-329. http://dx.doi.org/10.1016/j.jaridenv.2010.11.001
Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651-681. http://dx.doi.org/10.1146/annurev.arplant.59.032607.092911
Munzuroglu O, Geckil H. 2002. Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Archives of Environmental Contamination and Toxicology 43(2), 203-213. http://dx.doi.org/10.1007/s00244-002-1116-4
Monroy AF, Dhindsa RS. 1995. Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees C. The Plant Cell 7(3), 321-331. http://dx.doi.org/10.1105/tpc.7.3.321
Nascimento WM, West SH. 2000. Drying during muskmelon (Cucumis melo L.) seed priming and its effects on seed germination and deterioration. Seed Science and Technology 28(1), 211-215.
Nedjimi B, Daoud Y. 2009. Ameliorative effect of CaCl2 on growth, membrane permeability and nutrient uptake in Atriplex halimus subsp. schweinfurthii grown at high (NaCl) salinity. Desalination 249(1), 163-166. http://dx.doi.org/10.1016/j.desal.2009.01.019
Neumann P. 1997. Salinity resistance and plant growth revisited. Plant Cell and Environment 20(9), 1193-1198. http://dx.doi.org/10.1046/j.1365-3040.1997.d01-139.x
Neumann PM, Azaizeh H, Leon D. 1994. Hardening of root cell walls: a growth inhibitory response to salinity stress. Plant, Cell & Environment 17(3), 303-309. http://dx.doi.org/10.1111/j.1365-3040.1994.tb00296.x
Osborne JM, Fox JED, Mercer S. 1993. Germination response under elevated salinities of six semi-arid bluebush species (Western Australia). Springer Netherlands, In Towards the rational use of high salinity tolerant plants, 323-338.
Pearce-Pinto GVN, Van Der Moezel PG, Bell DT. 1990. Seed germination under salinity stress in Western Australian species of Eucalyptus. Seed science and technology 18(1), 113-118.
Pejchar L, Mooney HA. 2009. Invasive species, ecosystem services and human well-being. Trends in ecology & evolution 24(9), 497-504. http://dx.doi.org/10.1016/j.tree.2009.03.016
Sanders D, Brownlee C, Harper JF. 1999. Communicating with calcium. The Plant Cell 11(4), 691-706. http://dx.doi.org /10.1105/tpc.11.4.691
Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui 2000. Over‐expression of a single Ca2+‐dependent protein kinase confers both cold and salt/drought tolerance on rice plants. The Plant Journal 23(3), 319-327. http://dx.doi.org/10.1046/j.1365-313x.2000.00787.x
Séhouéto CKP. 2014. Production de plants d’Acacia auriculiformis A. Cunn. ex Benth. pour le reboisement au Sud-Bénin. Abomey-Calavi, Bénin : Université d’Abomey-Calavi, Faculté des Sciences Agronomiques.
Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Newman IA. 2006. Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiology 141(4), 1653-1665. http://dx.doi.org/10.1104/pp.106.082388
Sidari M, Mallamaci C, Muscolo A. 2008. Drought, salinity and heat differently affect seed germination of Pinus pinea. Journal of forest research 13(5), 326-330. http://dx.doi.org/10.1007/s10310-008-0086-4
Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK. 2011. Additive effects of Na+ and Cl– ions on barley growth under salinity stress. Journal of Experimental Botany 62(6), 2189-2203. http://dx.doi.org/10.1093/jxb/erq422
Tuna AL, Kaya C, Ashraf M, Altunlu H, Yokas I, Yagmur B. 2007. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environmental and Experimental Botany 59(2), 173-178. http://dx.doi.org/10.1016/j.envexpbot.2005.12.007
Ungar IA. 1996. Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae). American Journal of Botany 83(5), 604-607.
Zhang J, Jia W, Yang J, Ismail AM. 2006. Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Research 97(1), 111-119. http://dx.doi.org/10.1016/j.fcr.2005.08.018
Abdenour Kheloufi, Abdelmalek Chorfi, Lahouaria Mounia Mansouri (2016), Comparative effect of NaCl and CaCl2 on seed germination of Acacia saligna L. and Acacia decurrens Willd; IJB, V8, N6, Jule, P1-13
https://innspub.net/comparative-effect-of-nacl-and-cacl2-on-seed-germination-of-acacia-saligna-l-and-acacia-decurrens-willd/
Copyright © 2016
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0